Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
Sensors (Basel) ; 22(16)2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36015883

ABSTRACT

This paper highlights a robust optimization and power management algorithm that supervises the energy transfer flow to meet the photovoltaic (PV) electric vehicle demand, even when the traction system is in motion. The power stage of the studied system consists of a triple-junction PV generator as the main energy source, a lithium-ion battery as an auxiliary energy source, and an electric vehicle. The input-output signal adaptation is made by using a stage of energy conversion. A bidirectional DC-DC buck-boost connects the battery to the DC-link. Two unidirectional boost converters interface between the PV generator and the DC link. One is controlled with a maximum power point tracking (MPPT) algorithm to reach the maximum power points. The other is used to control the voltage across the DC-link. The converters are connected to the electric vehicle via a three-phase inverter via the same DC-link. By considering the nonlinear behavior of these elements, dynamic models are developed. A robust nonlinear MPPT algorithm has been developed owing to the nonlinear dynamics of the PV generator, metrological condition variations, and load changes. The high performance of the MPPT algorithm is effectively highlighted over a comparative study with two classical P & O and the fuzzy logic MPPT algorithms. A nonlinear control based on the Lyapunov function has been developed to simultaneously regulate the DC-link voltage and control battery charging and discharging operations. An energy management rule-based strategy is presented to effectively supervise the power flow. The conceived system, energy management, and control algorithms are implemented and verified in the Matlab/Simulink environment. Obtained results are presented and discussed under different operating conditions.

2.
ISA Trans ; 64: 353-364, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27264156

ABSTRACT

As per modern electrical grid rules, Wind Turbine needs to operate continually even in presence severe grid faults as Low Voltage Ride Through (LVRT). Hence, a new LVRT Fault Detection and Identification (FDI) procedure has been developed to take the appropriate decision in order to develop the convenient control strategy. To obtain much better decision and enhanced FDI during grid fault, the proposed procedure is based on voltage indicators analysis using a new Artificial Neural Network architecture (ANN). In fact, two features are extracted (the amplitude and the angle phase). It is divided into two steps. The first is fault indicators generation and the second is indicators analysis for fault diagnosis. The first step is composed of six ANNs which are dedicated to describe the three phases of the grid (three amplitudes and three angle phases). Regarding to the second step, it is composed of a single ANN which analysis the indicators and generates a decision signal that describes the function mode (healthy or faulty). On other hand, the decision signal identifies the fault type. It allows distinguishing between the four faulty types. The diagnosis procedure is tested in simulation and experimental prototype. The obtained results confirm and approve its efficiency, rapidity, robustness and immunity to the noise and unknown inputs.


Subject(s)
Electric Power Supplies , Neural Networks, Computer , Wind , Algorithms , Computer Simulation , Equipment Failure , Mechanical Phenomena , Nonlinear Dynamics , Signal Processing, Computer-Assisted
3.
Math Biosci ; 271: 128-35, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26606994

ABSTRACT

Susceptible Exposed Infectious and Recovered epidemic model endowed with a treatment function (SEIR-T model) is a well-known model used to reproduce the behavior of an epidemic, where the susceptible population and the exposed population need to be estimated to predict and control the propagation of a contagious disease. This paper focuses on the nonlinear observer design for a class of nonlinear piecewise systems including SEIR-T models. For this purpose, two changes of coordinates are provided to transform the considered systems into an extended nonlinear observer normal form, on which a high gain observer can be applied. Then, the proposed method is applied to a SEIR-T model. Finally, simulation results are given to show its efficiency.


Subject(s)
Communicable Diseases , Epidemics , Models, Theoretical , Nonlinear Dynamics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL