Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters








Publication year range
2.
Nat Cardiovasc Res ; 3(8): 1003-1016, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39196032

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is an inherited disease of the sarcomere resulting in excessive cardiac contractility. The first-in-class cardiac myosin inhibitor, mavacamten, improves symptoms in obstructive HCM. Here we present aficamten, a selective small-molecule inhibitor of cardiac myosin that diminishes ATPase activity by strongly slowing phosphate release, stabilizing a weak actin-binding state. Binding to an allosteric site on the myosin catalytic domain distinct from mavacamten, aficamten prevents the conformational changes necessary to enter the strongly actin-bound force-generating state. In doing so, aficamten reduces the number of functional myosin heads driving sarcomere shortening. The crystal structure of aficamten bound to cardiac myosin in the pre-powerstroke state provides a basis for understanding its selectivity over smooth and fast skeletal muscle. Furthermore, in cardiac myocytes and in mice bearing the hypertrophic R403Q cardiac myosin mutation, aficamten reduces cardiac contractility. Our findings suggest aficamten holds promise as a therapy for HCM.


Subject(s)
Cardiac Myosins , Cardiomyopathy, Hypertrophic , Myocardial Contraction , Animals , Cardiomyopathy, Hypertrophic/drug therapy , Cardiomyopathy, Hypertrophic/metabolism , Humans , Myocardial Contraction/drug effects , Cardiac Myosins/metabolism , Cardiac Myosins/genetics , Disease Models, Animal , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Mice , Crystallography, X-Ray , Mutation , Sarcomeres/metabolism , Sarcomeres/drug effects , Actins/metabolism , Models, Molecular , Mice, Transgenic , Protein Conformation
3.
Cell Rep ; 43(1): 113631, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38183651

ABSTRACT

Glioblastoma stem-like cells (GSCs) compose a tumor-initiating and -propagating population remarkably vulnerable to variation in the stability and integrity of the lysosomal compartment. Previous work has shown that the expression and activity of the paracaspase MALT1 control GSC viability via lysosome abundance. However, the underlying mechanisms remain elusive. By combining RNA sequencing (RNA-seq) with proteome-wide label-free quantification, we now report that MALT1 repression in patient-derived GSCs alters the homeostasis of cholesterol, which accumulates in late endosomes (LEs)-lysosomes. This failure in cholesterol supply culminates in cell death and autophagy defects, which can be partially reverted by providing exogenous membrane-permeable cholesterol to GSCs. From a molecular standpoint, a targeted lysosome proteome analysis unraveled that Niemann-Pick type C (NPC) lysosomal cholesterol transporters are diluted when MALT1 is impaired. Accordingly, we found that NPC1/2 inhibition and silencing partially mirror MALT1 loss-of-function phenotypes. This supports the notion that GSC fitness relies on lysosomal cholesterol homeostasis.


Subject(s)
Glioblastoma , Niemann-Pick Disease, Type C , Humans , Proteome/metabolism , Carrier Proteins/metabolism , Glioblastoma/genetics , Glioblastoma/metabolism , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Homeostasis , Lysosomes/metabolism , Cholesterol/metabolism , Niemann-Pick Disease, Type C/metabolism
4.
Proc Natl Acad Sci U S A ; 120(8): e2207425120, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36800388

ABSTRACT

Lysosomal exocytosis is involved in many key cellular processes but its spatiotemporal regulation is poorly known. Using total internal reflection fluorescence microscopy (TIRFM) and spatial statistics, we observed that lysosomal exocytosis is not random at the adhesive part of the plasma membrane of RPE1 cells but clustered at different scales. Although the rate of exocytosis is regulated by the actin cytoskeleton, neither interfering with actin or microtubule dynamics by drug treatments alters its spatial organization. Exocytosis events partially co-appear at focal adhesions (FAs) and their clustering is reduced upon removal of FAs. Changes in membrane tension following a hypo-osmotic shock or treatment with methyl-ß-cyclodextrin were found to increase clustering. To investigate the link between FAs and membrane tension, cells were cultured on adhesive ring-shaped micropatterns, which allow to control the spatial organization of FAs. By using a combination of TIRFM and fluorescence lifetime imaging microscopy (FLIM), we revealed the existence of a radial gradient in membrane tension. By changing the diameter of micropatterned substrates, we further showed that this gradient as well as the extent of exocytosis clustering can be controlled. Together, our data indicate that the spatial clustering of lysosomal exocytosis relies on membrane tension patterning controlled by the spatial organization of FAs.


Subject(s)
Cell Physiological Phenomena , Exocytosis , Cell Membrane/metabolism , Exocytosis/physiology , Membranes , Lysosomes/metabolism
5.
Commun Biol ; 6(1): 114, 2023 01 28.
Article in English | MEDLINE | ID: mdl-36709383

ABSTRACT

Lysosomes orchestrate degradation and recycling of exogenous and endogenous material thus controlling cellular homeostasis. Little is known how this organelle changes during cancer. Here we investigate the intracellular landscape of lysosomes in a cellular model of bladder cancer. Employing standardized cell culture on micropatterns we identify a phenotype of peripheral lysosome positioning prevailing in bladder cancer cell lines but not normal urothelium. We show that lysosome positioning is controlled by phosphatidylinositol-3-phosphate (PtdIns3P) levels on endomembranes which recruit FYVE-domain containing proteins for lysosomal dispersion. We identify transcription factor EB (TFEB) as an upstream regulator of PtdIns3P production by VPS34 that is activated in aggressive bladder cancer cells with peripheral lysosomes. This conceptually clarifies the dual role of TFEB as regulator of endosomal maturation and autophagy, two distinct processes controlled by PtdIns3P. Altogether, our findings uncover peripheral lysosome positioning, resulting from PtdIns3P production downstream of TFEB activation, as a potential biomarker for bladder cancer.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Phosphatidylinositol Phosphates , Urinary Bladder Neoplasms , Humans , Lysosomes/metabolism , Phosphates/metabolism , Phosphatidylinositol Phosphates/metabolism , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism
6.
Biology (Basel) ; 11(7)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-36101369

ABSTRACT

The actin cytoskeleton plays crucial roles in cell morphogenesis and functions. The main partners of cortical actin are molecular motors of the myosin superfamily. Although our understanding of myosin functions is heavily based on myosin-II and its ability to dimerize, the largest and most ancient class is represented by myosin-I. Class 1 myosins are monomeric, actin-based motors that regulate a wide spectrum of functions, and whose dysregulation mediates multiple human diseases. We highlight the current challenges in identifying the "pantograph" for myosin-I motors: we need to reveal how conformational changes of myosin-I motors lead to diverse cellular as well as multicellular phenotypes. We review several mechanisms for scaling, and focus on the (re-) emerging function of class 1 myosins to remodel the actin network architecture, a higher-order dynamic scaffold that has potential to leverage molecular myosin-I functions. Undoubtfully, understanding the molecular functions of myosin-I motors will reveal unexpected stories about its big partner, the dynamic actin cytoskeleton.

7.
Elife ; 112022 03 18.
Article in English | MEDLINE | ID: mdl-35302488

ABSTRACT

Migrating cells present a variety of paths, from random to highly directional ones. While random movement can be explained by basal intrinsic activity, persistent movement requires stable polarization. Here, we quantitatively address emergence of persistent migration in (hTERT)-immortalizedRPE1 (retinal pigment epithelial) cells over long timescales. By live cell imaging and dynamic micropatterning, we demonstrate that the Nucleus-Golgi axis aligns with direction of migration leading to efficient cell movement. We show that polarized trafficking is directed toward protrusions with a 20-min delay, and that migration becomes random after disrupting internal cell organization. Eventually, we prove that localized optogenetic Cdc42 activation orients the Nucleus-Golgi axis. Our work suggests that polarized trafficking stabilizes the protrusive activity of the cell, while protrusive activity orients this polarity axis, leading to persistent cell migration. Using a minimal physical model, we show that this feedback is sufficient to recapitulate the quantitative properties of cell migration in the timescale of hours.


Subject(s)
Cell Polarity , Golgi Apparatus , Cell Movement/physiology , Cell Polarity/physiology
8.
Biol Cell ; 113(7): 311-328, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33666950

ABSTRACT

BACKGROUND INFORMATION: Comprehensive libraries of plasmids for SARS-CoV-2 proteins with various tags (e.g., Strep, HA, Turbo) are now available. They enable the identification of numerous potential protein-protein interactions between the SARS-CoV-2 virus and host proteins. RESULTS: We present here a large library of SARS CoV-2 protein constructs fused with green and red fluorescent proteins and their initial characterisation in various human cell lines including lung epithelial cell models (A549, BEAS-2B), as well as in budding yeast. The localisation of a few SARS-CoV-2 proteins matches their proposed interactions with host proteins. These include the localisation of Nsp13 to the centrosome, Orf3a to late endosomes and Orf9b to mitochondria. CONCLUSIONS AND SIGNIFICANCE: This library should facilitate further cellular investigations, notably by imaging techniques.


Subject(s)
COVID-19/virology , Peptide Library , SARS-CoV-2/metabolism , Viral Proteins/metabolism , A549 Cells , Cell Line , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Host Microbial Interactions/physiology , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Microscopy, Fluorescence , Protein Interaction Domains and Motifs , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , SARS-CoV-2/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Time-Lapse Imaging , Viral Proteins/genetics , Red Fluorescent Protein
9.
Biol Cell ; 113(6): 272-280, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33554340

ABSTRACT

Cancer is a multi-step disease where an initial tumour progresses through critical steps shaping, in most cases, life-threatening secondary foci called metastases. The oncogenic cascade involves genetic, epigenetic, signalling pathways, intracellular trafficking and/or metabolic alterations within cancer cells. In addition, pre-malignant and malignant cells orchestrate complex and dynamic interactions with non-malignant cells and acellular matricial components or secreted factors within the tumour microenvironment that is instrumental in the progression of the disease. As our aptitude to effectively treat cancer mostly depends on our ability to decipher, properly diagnose and impede cancer progression and metastasis formation, full characterisation of molecular complexes and cellular processes at play along the metastasis cascade is crucial. For many years, the scientific community lacked adapted imaging and molecular technologies to accurately dissect, at the highest resolution possible, tumour and stromal cells behaviour within their natural microenvironment. In that context, the NANOTUMOR consortium is a French national multi-disciplinary workforce which aims at a providing a multi-scale characterisation of the oncogenic cascade, from the atomic level to the dynamic organisation of the cell in response to genetic mutations, environmental changes or epigenetic modifications. Ultimately, this program aims at identifying new therapeutic targets using innovative drug design.


Subject(s)
Databases as Topic , Neoplasms/pathology , Humans
10.
J Vis Exp ; (163)2020 09 16.
Article in English | MEDLINE | ID: mdl-33016933

ABSTRACT

Live imaging of the pHluorin tagged Soluble N-ethylmaleimide-sensitive-factor Attachment protein REceptor (v-SNARE) Vesicle-associated membrane protein 7 (VAMP7) by total internal reflection fluorescence microscopy (TIRFM) is a straightforward way to explore secretion from the lysosomal compartment. Taking advantage of cell culture on micropatterned surfaces to normalize cell shape, a variety of statistical tools were employed to perform a spatial analysis of secretory patterns. Using Ripley's K function and a statistical test based on the nearest neighbor distance (NND), we confirmed that secretion from lysosomes is not a random process but shows significant clustering. Of note, our analysis revealed that exocytosis events are also clustered in nonadhesion areas, indicating that adhesion molecules are not the only structures that can induce secretory hot spots at the plasma membrane. Still, we found that cell adhesion enhances clustering. In addition to precisely defined adhesive and nonadhesive areas, the circular geometry of these micropatterns allows the use of polar coordinates, simplifying analyses. We used Kernel Density Estimation (KDE) and the cumulative distribution function on polar coordinates of exocytosis events to identify enriched areas of exocytosis. In ring-shaped micropattern cells, clustering occurred at the border between the adhesive and nonadhesive areas. Our analysis illustrates how statistical tools can be employed to investigate spatial distributions of diverse biological processes.


Subject(s)
Exocytosis , Animals , Cell Membrane/metabolism , Cell Shape , Cells, Cultured , Humans , Lysosomes/metabolism , SNARE Proteins/metabolism , Spatio-Temporal Analysis
11.
J Cell Sci ; 132(24)2019 12 13.
Article in English | MEDLINE | ID: mdl-31836687

ABSTRACT

Many studies have investigated the processes that support polarity establishment and maintenance in cells. On the one hand, polarity complexes at the cell cortex and their downstream signaling pathways have been assigned as major regulators of polarity. On the other hand, intracellular organelles and their polarized trafficking routes have emerged as important components of polarity. In this Review, we argue that rather than trying to identify the prime 'culprit', now it is time to consider all these players as a collective. We highlight that understanding the intimate coordination between the polarized cell cortex and the intracellular compass that is defined by organelle positioning is essential to capture the concept of polarity. After briefly reviewing how polarity emerges from a dynamic maintenance of cellular asymmetries, we highlight how intracellular organelles and their associated trafficking routes provide diverse feedback for dynamic cell polarity maintenance. We argue that the asymmetric organelle compass is an indispensable element of the polarity network.


Subject(s)
Cell Movement/physiology , Cell Polarity/physiology , Organelles/metabolism , Animals , Cell Movement/genetics , Cell Polarity/genetics , Humans , Models, Biological , Signal Transduction/genetics , Signal Transduction/physiology
12.
J Cell Sci ; 132(8)2019 04 26.
Article in English | MEDLINE | ID: mdl-30872458

ABSTRACT

In this study, we aimed to identify the myosin motor proteins that control trafficking at the Golgi complex. In addition to the known Golgi-associated myosins MYO6, MYO18A and MYH9 (myosin IIA), we identified MYO1C as a novel player at the Golgi in a human cell line. We demonstrate that depletion of MYO1C induces Golgi complex fragmentation and decompaction. MYO1C accumulates at dynamic structures around the Golgi complex that colocalize with Golgi-associated actin dots. MYO1C depletion leads to loss of cellular F-actin, and Golgi complex decompaction is also observed after inhibition or loss of the actin-related protein 2/3 complex, Arp2/3 (also known as ARPC). We show that the functional consequence of MYO1C depletion is a delay in the arrival of incoming transport carriers, both from the anterograde and retrograde routes. We propose that MYO1C stabilizes actin at the Golgi complex, facilitating the arrival of incoming transport carriers at the Golgi.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Actin Cytoskeleton/metabolism , Actins/metabolism , Golgi Apparatus/metabolism , Myosin Type I/metabolism , Cell Line , Cell Movement , Humans , Myosin Type I/genetics , Protein Transport
13.
Methods Mol Biol ; 1862: 263-278, 2019.
Article in English | MEDLINE | ID: mdl-30315474

ABSTRACT

Many studies have found alterations in the positioning and morphology of intracellular organelles under different experimental conditions. Although the precise quantification of these changes is challenging, it is strongly facilitated in single cells that are seeded on micropatterned substrates. Indeed, the controlled microenvironment of the cell leads to a reproducible distribution of organelles, simplifying image analysis and minimizing the number of cells required for robust phenotypes. Here, we outline how alterations in the intracellular organization of lysosomes and mitochondria, as a result of different growth conditions, can be efficiently quantified in cells seeded on adhesive micropatterns.


Subject(s)
Imaging, Three-Dimensional/methods , Lysosomes/metabolism , Mitochondria/metabolism , Single-Cell Analysis/methods , Cell Culture Techniques/instrumentation , Cell Culture Techniques/methods , Cell Line , Humans , Imaging, Three-Dimensional/instrumentation , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods , Single-Cell Analysis/instrumentation
14.
Curr Protoc Cell Biol ; 82(1): e77, 2019 03.
Article in English | MEDLINE | ID: mdl-30431237

ABSTRACT

The consequences of alterations in the distribution of intracellular organelles, observed in many diseases, are often not clear. Intracellular organelles alter their morphology and positioning to regulate cell homeostasis and function. We outline how organelle positioning can be studied employing a density-based analysis of 3D images applied to cells that show similar cellular geometries. Quantification is facilitated by the use of single cells seeded on micropatterned substrates that provide cues for controlled cell spreading. This minimal system mimics the reproducible distribution of organelles typically observed in tissues, simplifying image analysis and minimizing the number of cells required for the observation of robust phenotypes. Here we provide guidelines for how the majority of organelles can be efficiently analyzed in cells seeded on adhesive micropatterns. We exemplify how alterations in the positioning of different organelles as a result of the perturbation of the cytoskeleton or associated motor proteins can be efficiently quantified. © 2018 by John Wiley & Sons, Inc.


Subject(s)
Imaging, Three-Dimensional/instrumentation , Imaging, Three-Dimensional/methods , Organelles/metabolism , Cell Adhesion , Cells, Cultured , Humans , Single-Cell Analysis
15.
Nat Commun ; 9(1): 3825, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30237420

ABSTRACT

It is generally assumed that cells interrogate the mechanical properties of their environment by pushing and pulling on the extracellular matrix (ECM). For instance, acto-myosin-dependent contraction forces exerted at focal adhesions (FAs) allow the cell to actively probe substrate elasticity. Here, we report that a subset of long-lived and flat clathrin-coated structures (CCSs), also termed plaques, are contractility-independent mechanosensitive signaling platforms. We observed that plaques assemble in response to increasing substrate rigidity and that this is independent of FAs, actin and myosin-II activity. We show that plaque assembly depends on αvß5 integrin, and is a consequence of frustrated endocytosis whereby αvß5 tightly engaged with the stiff substrate locally stalls CCS dynamics. We also report that plaques serve as platforms for receptor-dependent signaling and are required for increased Erk activation and cell proliferation on stiff environments. We conclude that CCSs are mechanotransduction structures that sense substrate rigidity independently of cell contractility.


Subject(s)
Clathrin-Coated Vesicles/metabolism , Endocytosis , Mechanotransduction, Cellular , Cell Line , Cell Proliferation , Clathrin-Coated Vesicles/ultrastructure , Humans , MAP Kinase Signaling System , Receptors, Vitronectin/metabolism
16.
Nat Cell Biol ; 17(11): 1412-21, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26436690

ABSTRACT

Integrin-containing focal adhesions transmit extracellular signals across the plasma membrane to modulate cell adhesion, signalling and survival. Although integrins are known to undergo continuous endo/exocytic traffic, the potential impact of endocytic traffic on integrin-induced signals is unknown. Here, we demonstrate that integrin signalling is not restricted to cell-ECM adhesions and identify an endosomal signalling platform that supports integrin signalling away from the plasma membrane. We show that active focal adhesion kinase (FAK), an established marker of integrin-ECM downstream signalling, localizes with active integrins on endosomes. Integrin endocytosis positively regulates adhesion-induced FAK activation, which is early endosome antigen-1 and small GTPase Rab21 dependent. FAK binds directly to purified endosomes and becomes activated on them, suggesting a role for endocytosis in enhancing distinct integrin downstream signalling events. Finally, endosomal integrin signalling contributes to cancer-related processes such as anoikis resistance, anchorage independence and metastasis.


Subject(s)
Anoikis/physiology , Endosomes/metabolism , Focal Adhesion Kinase 1/metabolism , Integrin beta1/metabolism , Signal Transduction/physiology , Animals , Anoikis/genetics , CHO Cells , Cell Line , Cell Line, Tumor , Cells, Cultured , Cricetinae , Cricetulus , Endocytosis/genetics , Endocytosis/physiology , Extracellular Matrix/metabolism , Focal Adhesion Kinase 1/genetics , Focal Adhesions/metabolism , Humans , Integrin beta1/genetics , Mice, Knockout , Microscopy, Confocal , Phosphorylation , Protein Binding , RNA Interference , Signal Transduction/genetics , rab GTP-Binding Proteins/metabolism
17.
Nat Commun ; 5: 5647, 2014 Dec 09.
Article in English | MEDLINE | ID: mdl-25487648

ABSTRACT

Phosphoinositides play a central role in many physiological processes by assisting the recruitment of proteins to membranes through specific phosphoinositide-binding motifs. How this recruitment is coordinated in space and time is not well understood. Here we show that BIN1/M-Amphiphysin2, a protein involved in T-tubule biogenesis in muscle cells and frequently mutated in centronuclear myopathies, clusters PtdIns(4,5)P2 to recruit its downstream partner dynamin. By using several mutants associated with centronuclear myopathies, we find that the N-BAR and the SH3 domains of BIN1 control the kinetics and the accumulation of dynamin on membranes, respectively. We show that phosphoinositide clustering is a mechanism shared by other proteins that interact with PtdIns(4,5)P2, but do not contain a BAR domain. Our numerical simulations point out that clustering is a diffusion-driven process in which phosphoinositide molecules are not sequestered. We propose that this mechanism plays a key role in the recruitment of downstream phosphoinositide-binding proteins.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Dynamins/chemistry , Nuclear Proteins/chemistry , Phosphatidylinositols/chemistry , Tumor Suppressor Proteins/chemistry , Amino Acid Motifs , Cell Membrane/chemistry , Endocytosis , Fluorescent Dyes/chemistry , Green Fluorescent Proteins/chemistry , HeLa Cells , Humans , Lipid Bilayers/chemistry , Liposomes/chemistry , Molecular Dynamics Simulation , Muscles/metabolism , Protein Binding , Protein Structure, Tertiary
18.
Curr Biol ; 24(15): 1700-11, 2014 Aug 04.
Article in English | MEDLINE | ID: mdl-25042587

ABSTRACT

BACKGROUND: In vitro studies have shown that physical parameters, such as membrane curvature, tension, and composition, influence the budding and fission of transport intermediates. Endocytosis in living cells also appears to be regulated by the mechanical load experienced by the plasma membrane. In contrast, how these parameters affect intracellular membrane trafficking in living cells is not known. To address this question, we investigate here the impact of a mechanical stress on the organization of the Golgi complex and on the formation of transport intermediates from the Golgi complex. RESULTS: Using confocal microscopy, we visualize the deformation of Rab6-positive Golgi membranes applied by an internalized microsphere trapped in optical tweezers and simultaneously measure the corresponding forces. Our results show that the force necessary to deform Golgi membranes drops when actin dynamics is altered and correlates with myosin II activity. We also show that the applied stress has a long-range effect on Golgi membranes, perturbs the dynamics of Golgi-associated actin, and induces a sharp decrease in the formation of Rab6-positive vesicles from the Golgi complex as well as tubulation of Golgi membranes. CONCLUSIONS: We suggest that acto-myosin contractility strongly contributes to the local rigidity of the Golgi complex and regulates the mechanics of the Golgi complex to control intracellular membrane trafficking.


Subject(s)
Golgi Apparatus/metabolism , Intracellular Membranes/metabolism , Actins/metabolism , Biomechanical Phenomena , Cells, Cultured , Humans , Microscopy, Confocal , Myosin Type II/metabolism , Rheology , rab GTP-Binding Proteins/metabolism
19.
Methods Mol Biol ; 1174: 117-38, 2014.
Article in English | MEDLINE | ID: mdl-24947378

ABSTRACT

Despite a large body of publications on endocytosis, only a few studies have focused on its spatial organization. To study how endocytosis is related to distinct cellular sites, we combine cell normalization by the "micropatterning technique" with the quantification of spatial organization by "probabilistic density mapping." Micropatterns of extracellular matrix proteins impose adhesive and non-adhesive areas to cultured cells and allow the control of adhesion geometry, shape, and cell organization. Probabilistic density maps provide a visual summary for 3D localization of the structures of interest and enable the extraction of robust statistics for quantification of cellular organization. Here, we provide a method to analyze and compare the spatial distribution of endocytosed ligands in micropatterned cells. This approach permits to establish the role of cellular adhesion on uptake mechanisms and to address the potential function of predefined sites of endocytosis.


Subject(s)
Endocytosis/physiology , Cell Adhesion , Cell Line , Humans , Image Processing, Computer-Assisted , Microscopy, Fluorescence/methods
20.
Bioarchitecture ; 4(2): 62-7, 2014.
Article in English | MEDLINE | ID: mdl-24717194

ABSTRACT

Eukaryotic cells display an asymmetric distribution of cellular compartments relying on their adhesion and the underlying anisotropy of the actin and microtubule cytoskeleton. Studies using a minimal cell culture system based on confined adhesion on micropatterns have illustrated that trafficking compartments are well organized at the single cell level in response to the geometry of cellular adhesion cues. Expanding our analysis on cellular uptake processes, we have found that cellular adhesion additionally defines the topology of endocytosis and signaling. During endocytosis, transferrin (Tfn) and epidermal growth factor (EGF) concentrate at distinct cellular sites in micropatterned cells. Tfn is enriched in adhesive sites during uptake, whereas EGF endocytosis is restricted to the dorsal cellular surface. This unexpected dorsal/ventral asymmetry is regulated by uptake mechanisms and actin dynamics. Interestingly, restricted EGF uptake leads to asymmetry of EGF receptor activation that is required to sustain downstream signaling. Based on our results, we propose that differential sorting begins at the plasma membrane leading to spatially distinct intracellular trafficking routes that are well defined in space. We speculate that the intracellular positioning of trafficking compartments sustains an important coupling between the endocytic and signaling systems that allows cells to sense their environment.


Subject(s)
Cell Adhesion , Endocytosis , Epidermal Growth Factor/metabolism , Signal Transduction , Transferrin/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL