Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters








Publication year range
1.
Nat Commun ; 15(1): 2385, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493170

ABSTRACT

Forest soils harbor hyper-diverse microbial communities which fundamentally regulate carbon and nutrient cycling across the globe. Directly testing hypotheses on how microbiome diversity is linked to forest carbon storage has been difficult, due to a lack of paired data on microbiome diversity and in situ observations of forest carbon accumulation and storage. Here, we investigated the relationship between soil microbiomes and forest carbon across 238 forest inventory plots spanning 15 European countries. We show that the composition and diversity of fungal, but not bacterial, species is tightly coupled to both forest biotic conditions and a seven-fold variation in tree growth rates and biomass carbon stocks when controlling for the effects of dominant tree type, climate, and other environmental factors. This linkage is particularly strong for symbiotic endophytic and ectomycorrhizal fungi known to directly facilitate tree growth. Since tree growth rates in this system are closely and positively correlated with belowground soil carbon stocks, we conclude that fungal composition is a strong predictor of overall forest carbon storage across the European continent.


Subject(s)
Mycobiome , Carbon , Soil Microbiology , Forests , Trees/microbiology , Soil
2.
J Imaging ; 10(2)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38392088

ABSTRACT

Detecting micron-sized particles is an essential task for the analysis of complex plasmas because a large part of the analysis is based on the initially detected positions of the particles. Accordingly, high accuracy in particle detection is desirable. Previous studies have shown that machine learning algorithms have made great progress and outperformed classical approaches. This work presents an approach for tracking micron-sized particles in a dense cloud of particles in a dusty plasma at Plasmakristall-Experiment 4 using a U-Net. The U-net is a convolutional network architecture for the fast and precise segmentation of images that was developed at the Computer Science Department of the University of Freiburg. The U-Net architecture, with its intricate design and skip connections, has been a powerhouse in achieving precise object delineation. However, as experiments are to be conducted in resource-constrained environments, such as parabolic flights, preferably with real-time applications, there is growing interest in exploring less complex U-net architectures that balance efficiency and effectiveness. We compare the full-size neural network, three optimized neural networks, the well-known StarDist and trackpy, in terms of accuracy in artificial data analysis. Finally, we determine which of the compact U-net architectures provides the best balance between efficiency and effectiveness. We also apply the full-size neural network and the the most effective compact network to the data of the PK-4 experiment. The experimental data were generated under laboratory conditions.

3.
Br J Sociol ; 74(4): 673-689, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37165948

ABSTRACT

Efforts to move sociology beyond the nation state and international relations theory have both been plagued by several limitations and dualisms. Recent research has begun to find ways beyond the problems by turning to Pierre Bourdieu's relational conception of social structure and practice. Yet one specific relational structure forming a key part of the puzzle has been neglected or merely implicitly assumed so far: the space of nation states. After clarifying the structural-constructivist nature of this concept, we aim to specify it by constructing an empirical model of the contemporary space of nation states using a specially compiled dataset and tools of geometric data analysis. The analysis reveals the distribution of powers on the world scene, and more specifically, the uneven possession of two varieties of "meta-capital" understood as capacities to regulate the value and exchangeability of certain capitals and to decree what even defines a legitimate "state". We argue that the nation state, which is accurately understood as a contingent construct and well-founded fiction from a Bourdieusian viewpoint, should not be excluded when analyzing the expression and reproduction of contemporary global power relations.


Subject(s)
Internationality , Sociology , Humans
4.
Emerg Infect Dis ; 28(10): 2064-2068, 2022 10.
Article in English | MEDLINE | ID: mdl-36148931

ABSTRACT

The fungus Ophiodimyces ophiodiicola is the etiologic agent of snake fungal disease. Recent findings date US occurrence at least as far back as 1945. We analyzed 22 free-ranging snakes with gross lesions consistent with snake fungal disease from museum collections from Europe. We found 5 positive samples, the oldest collected in 1959.


Subject(s)
Mycoses , Snakes , Animals , Europe/epidemiology , Fungi , Mycoses/epidemiology , Mycoses/microbiology , Mycoses/veterinary , Snakes/microbiology
5.
Glob Chang Biol ; 28(17): 5062-5085, 2022 09.
Article in English | MEDLINE | ID: mdl-35642454

ABSTRACT

Although it is an integral part of global change, most of the research addressing the effects of climate change on forests have overlooked the role of environmental pollution. Similarly, most studies investigating the effects of air pollutants on forests have generally neglected the impacts of climate change. We review the current knowledge on combined air pollution and climate change effects on global forest ecosystems and identify several key research priorities as a roadmap for the future. Specifically, we recommend (1) the establishment of much denser array of monitoring sites, particularly in the South Hemisphere; (2) further integration of ground and satellite monitoring; (3) generation of flux-based standards and critical levels taking into account the sensitivity of dominant forest tree species; (4) long-term monitoring of N, S, P cycles and base cations deposition together at global scale; (5) intensification of experimental studies, addressing the combined effects of different abiotic factors on forests by assuring a better representation of taxonomic and functional diversity across the ~73,000 tree species on Earth; (6) more experimental focus on phenomics and genomics; (7) improved knowledge on key processes regulating the dynamics of radionuclides in forest systems; and (8) development of models integrating air pollution and climate change data from long-term monitoring programs.


Subject(s)
Air Pollution , Climate Change , Air Pollution/adverse effects , Ecosystem , Forests , Trees
6.
ISME J ; 16(5): 1327-1336, 2022 05.
Article in English | MEDLINE | ID: mdl-35001085

ABSTRACT

Most trees form symbioses with ectomycorrhizal fungi (EMF) which influence access to growth-limiting soil resources. Mesocosm experiments repeatedly show that EMF species differentially affect plant development, yet whether these effects ripple up to influence the growth of entire forests remains unknown. Here we tested the effects of EMF composition and functional genes relative to variation in well-known drivers of tree growth by combining paired molecular EMF surveys with high-resolution forest inventory data across 15 European countries. We show that EMF composition was linked to a three-fold difference in tree growth rate even when controlling for the primary abiotic drivers of tree growth. Fast tree growth was associated with EMF communities harboring high inorganic but low organic nitrogen acquisition gene proportions and EMF which form contact versus medium-distance fringe exploration types. These findings suggest that EMF composition is a strong bio-indicator of underlying drivers of tree growth and/or that variation of forest EMF communities causes differences in tree growth. While it may be too early to assign causality or directionality, our study is one of the first to link fine-scale variation within a key component of the forest microbiome to ecosystem functioning at a continental scale.


Subject(s)
Mycorrhizae , Ecosystem , Forests , Mycorrhizae/genetics , Plant Roots/microbiology , Trees/microbiology
7.
Sci Total Environ ; 806(Pt 2): 150422, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34852431

ABSTRACT

This study aimed to simulate oak and beech forest growth under various scenarios of climate change and to evaluate how the forest response depends on site properties and particularly on stand characteristics using the individual process-based model HETEROFOR. First, this model was evaluated on a wide range of site conditions. We used data from 36 long-term forest monitoring plots to initialize, calibrate, and evaluate HETEROFOR. This evaluation showed that HETEROFOR predicts individual tree radial growth and height increment reasonably well under different growing conditions when evaluated on independent sites. In our simulations under constant CO2 concentration ([CO2]cst) for the 2071-2100 period, climate change induced a moderate net primary production (NPP) gain in continental and mountainous zones and no change in the oceanic zone. The NPP changes were negatively affected by air temperature during the vegetation period and by the annual rainfall decrease. To a lower extent, they were influenced by soil extractable water reserve and stand characteristics. These NPP changes were positively affected by longer vegetation periods and negatively by drought for beech and larger autotrophic respiration costs for oak. For both species, the NPP gain was much larger with rising CO2 concentration ([CO2]var) mainly due to the CO2 fertilisation effect. Even if the species composition and structure had a limited influence on the forest response to climate change, they explained a large part of the NPP variability (44% and 34% for [CO2]cst and [CO2]var, respectively) compared to the climate change scenario (5% and 29%) and the inter-annual climate variability (20% and 16%). This gives the forester the possibility to act on the productivity of broadleaved forests and prepare them for possible adverse effects of climate change by reinforcing their resilience.


Subject(s)
Fagus , Quercus , Climate Change , Forests , Trees
8.
Mol Phylogenet Evol ; 163: 107258, 2021 10.
Article in English | MEDLINE | ID: mdl-34252546

ABSTRACT

Puddle frogs of the Phrynobatrachus steindachneri species complex are a useful group for investigating speciation and phylogeography in Afromontane forests of the Cameroon Volcanic Line, western Central Africa. The species complex is represented by six morphologically relatively cryptic mitochondrial DNA lineages, only two of which are distinguished at the species level - southern P. jimzimkusi and Lake Oku endemic P. njiomock, leaving the remaining four lineages identified as 'P. steindachneri'. In this study, the six mtDNA lineages are subjected to genomic sequence capture analyses and morphological examination to delimit species and to study biogeography. The nuclear DNA data (387 loci; 571,936 aligned base pairs) distinguished all six mtDNA lineages, but the topological pattern and divergence depths supported only four main clades: P. jimzimkusi, P. njiomock, and only two divergent evolutionary lineages within the four 'P. steindachneri' mtDNA lineages. One of the two lineages is herein described as a new species, P. amieti sp. nov. Reticulate evolution (hybridization) was detected within the species complex with morphologically intermediate hybrid individuals placed between the parental species in phylogenomic analyses, forming a ladder-like phylogenetic pattern. The presence of hybrids is undesirable in standard phylogenetic analyses but is essential and beneficial in the network multispecies coalescent. This latter approach provided insight into the reticulate evolutionary history of these endemic frogs. Introgressions likely occurred during the Middle and Late Pleistocene climatic oscillations, due to the cyclic connections (likely dominating during cold glacials) and separations (during warm interglacials) of montane forests. The genomic phylogeographic pattern supports the separation of the southern (Mt. Manengouba to Mt. Oku) and northern mountains at the onset of the Pleistocene. Further subdivisions occurred in the Early Pleistocene, separating populations from the northernmost (Tchabal Mbabo, Gotel Mts.) and middle mountains (Mt. Mbam, Mt. Oku, Mambilla Plateau), as well as the microendemic lineage restricted to Lake Oku (Mt. Oku). This unique model system is highly threatened as all the species within the complex have exhibited severe population declines in the past decade, placing them on the brink of extinction. In addition, Mount Oku is identified to be of particular conservation importance because it harbors three species of this complex. We, therefore, urge for conservation actions in the Cameroon Highlands to preserve their diversity before it is too late.


Subject(s)
Forests , Gene Flow , Cameroon , DNA, Mitochondrial/genetics , Humans , Phylogeny , Phylogeography
9.
Toxicon X ; 9-10: 100071, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34278294

ABSTRACT

The secretive behavior and life history of snakes makes studying their biology, distribution, and the epidemiology of venomous snakebite challenging. One of the most useful, most versatile, and easiest to collect types of biological data are photographs, particularly those that are connected with geographic location and date-time metadata. Photos verify occurrence records, provide data on phenotypes and ecology, and are often used to illustrate new species descriptions, field guides and identification keys, as well as in training humans and computer vision algorithms to identify snakes. We scoured eleven online and two offline sources of snake photos in an attempt to collect as many photos of as many snake species as possible, and attempt to explain some of the inter-species variation in photograph quantity among global regions and taxonomic groups, and with regard to medical importance, human population density, and range size. We collected a total of 725,565 photos-between 1 and 48,696 photos of 3098 of the world's 3879 snake species (79.9%), leaving 781 "most wanted" species with no photos (20.1% of all currently-described species as of the December 2020 release of The Reptile Database). We provide a list of most wanted species sortable by family, continent, authority, and medical importance, and encourage snake photographers worldwide to submit photos and associated metadata, particularly of "missing" species, to the most permanent and useful online archives: The Reptile Database, iNaturalist, and HerpMapper.

10.
Toxicon X, v. 9-10, 100071, jul. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3902

ABSTRACT

The secretive behavior and life history of snakes makes studying their biology, distribution, and the epidemiology of venomous snakebite challenging. One of the most useful, most versatile, and easiest to collect types of biological data are photographs, particularly those that are connected with geographic location and date-time metadata. Photos verify occurrence records, provide data on phenotypes and ecology, and are often used to illustrate new species descriptions, field guides and identification keys, as well as in training humans and computer vision algorithms to identify snakes. We scoured eleven online and two offline sources of snake photos in an attempt to collect as many photos of as many snake species as possible, and attempt to explain some of the inter-species variation in photograph quantity among global regions and taxonomic groups, and with regard to medical importance, human population density, and range size. We collected a total of 725,565 photos—between 1 and 48,696 photos of 3098 of the world's 3879 snake species (79.9%), leaving 781 “most wanted” species with no photos (20.1% of all currently-described species as of the December 2020 release of The Reptile Database). We provide a list of most wanted species sortable by family, continent, authority, and medical importance, and encourage snake photographers worldwide to submit photos and associated metadata, particularly of “missing” species, to the most permanent and useful online archives: The Reptile Database, iNaturalist, and HerpMapper.

11.
R Soc Open Sci ; 7(5): 200092, 2020 May.
Article in English | MEDLINE | ID: mdl-32537217

ABSTRACT

In the light of recent phylogenetic studies, we re-assess the taxonomy and biogeography of the Varanus populations distributed in the Micronesian islands of Palau, the Western Carolines and the Marianas. Whether these populations are of natural origin or human introductions has long been contentious, but no study has fully resolved that question. Here, we present molecular and morphological evidence that monitor lizards of the Varanus indicus Group reached both Palau and the Mariana Islands sometime in the late Pleistocene and subsequently differentiated into two separate species endemic to each geographical region. One species is confined to the Mariana Islands, and for these populations, we revalidate the name V. tsukamotoi Kishida, 1929. The other species has a disjunct distribution in Palau, the Western Carolines and Sarigan Island in the Northern Marianas and is herein described as V. bennetti sp. nov. Both species are most closely allied to each other, V. lirungensis and V. rainerguentheri, suggesting that colonization of Micronesia took place from the Moluccas. We discuss the biogeographic distributions of both species in the light of the likely colonization mechanism and previous arguments for human introduction, and we argue that bounties for Palauan populations are ill-advised and plans for eradication of some other populations must first demonstrate that they are, in fact, introduced and not native.

12.
13.
PeerJ ; 8: e8393, 2020.
Article in English | MEDLINE | ID: mdl-32175182

ABSTRACT

The Cameroon Volcanic Line, a mountain chain located between West and Central Africa, is a region of numerous endemic diversifications, including of puddle frogs (Phrynobatrachus). This study reviews the phylogeny and taxonomy of puddle frogs of the "Cameroon radiation," which is a clade containing mainly montane but also at least three lowland species. Molecular data revealed a novel evolutionary lineage from high altitudes in the northern part of the mountains. Puddle frogs from the new, minute-sized (SVL < 20 mm) lineage are identified using molecular, morphological and acoustic data and described as two new species, Phrynobatrachus arcanus sp. nov. (Gotel Mountains, Cameroon-Nigeria) and P. mbabo sp. nov. (Tchabal Mbabo, Cameroon). The tadpole of the first species is also described. Phylogenetic analyses placed the new lineage to the proximity of the recently described lowland small-sized taxa (P. horsti, P. ruthbeateae). Based on the inferred phylogeny, we propose five species groups within the Cameroon radiation: P. arcanus, P. chukuchuku, P. ruthbeateae, P. steindachneri, and P. werneri. The taxonomically enigmatic P. hylaios is proposed to be a member of the P. ruthbeateae species group. The basal radiation evolved during the late Miocene with subsequent diversifications occurring during the Pliocene, while closely related terminal taxa originated during the Pleistocene. We recommend that the newly described species are categorized as Critically Endangered due to their limited ranges and because recent surveys did not identify any individuals at the type localities. This further supports the need for conservation interventions in the mountains of Cameroon and Nigeria.

14.
Environ Pollut ; 244: 980-994, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30469293

ABSTRACT

Average nitrogen (N) deposition across Europe has declined since the 1990s. This resulted in decreased N inputs to forest ecosystems especially in Central and Western Europe where deposition levels are highest. While the impact of atmospheric N deposition on forests has been receiving much attention for decades, ecosystem responses to the decline in N inputs received less attention. Here, we review observational studies reporting on trends in a number of indicators: soil acidification and eutrophication, understory vegetation, tree nutrition (foliar element concentrations) as well as tree vitality and growth in response to decreasing N deposition across Europe. Ecosystem responses varied with limited decrease in soil solution nitrate concentrations and potentially also foliar N concentrations. There was no large-scale response in understory vegetation, tree growth, or vitality. Experimental studies support the observation of a more distinct reaction of soil solution and foliar element concentrations to changes in N supply compared to the three other parameters. According to the most likely scenarios, further decrease of N deposition will be limited. We hypothesize that this expected decline will not cause major responses of the parameters analysed in this study. Instead, future changes might be more strongly controlled by the development of N pools accumulated within forest soils, affected by climate change and forest management.


Subject(s)
Forests , Nitrates/analysis , Nitrogen Cycle , Nitrogen/analysis , Soil/chemistry , Trees/chemistry , Climate Change , Europe , Eutrophication , Observational Studies as Topic , Trees/growth & development
15.
Ann Biomed Eng ; 46(10): 1663-1675, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29948372

ABSTRACT

Endoscopic procedures have transformed minimally invasive surgery as they allow the examination and intervention on a patient's anatomy through natural orifices, without the need for external incisions. However, the complexity of anatomical pathways and the limited dexterity of existing instruments, limit such procedures mainly to diagnosis and biopsies. This paper proposes a new robotic platform: the Intuitive imaging sensing navigated and kinematically enhanced ([Formula: see text]) robot that aims to improve the field of endoscopic surgery. The proposed robotic platform includes a snake-like robotic endoscope equipped with a camera, a light-source and two robotic instruments, supported with a robotic arm for global positioning and for insertion of the [Formula: see text] and a master interface for master-slave teleoperation. The proposed robotic platform design focuses on ergonomics and intuitive control. The control workflow was first validated in simulation and then implemented on the robotic platform. The results are consistent with the simulation and show the clear clinical potential of the system. Limitations such as tendon backlash and elongation over time will be further investigated by means of combined hardware and software solutions. In conclusion, the proposed system contributes to the field of endoscopic surgical robots and could allow to perform more complex endoscopic surgical procedures while reducing patient trauma and recovery time.


Subject(s)
Robotic Surgical Procedures/instrumentation , Video-Assisted Surgery/instrumentation , Humans , Robotic Surgical Procedures/methods , Video-Assisted Surgery/methods
16.
BMC Evol Biol ; 17(1): 132, 2017 06 09.
Article in English | MEDLINE | ID: mdl-28599627

ABSTRACT

BACKGROUND: Many animal and plant species in the Middle East and northern Africa have a predominantly longitudinal distribution, extending from Iran and Turkey along the eastern Mediterranean coast into northern Africa. These species are potentially characterized by longitudinal patterns of biological diversity, but little is known about the underlying biogeographic mechanisms and evolutionary timescales. We examined these questions in the striped skink, Heremites vittatus, one such species with a roughly longitudinal distribution across the Middle East and northern Africa, by analyzing range-wide patterns of mitochondrial DNA (mtDNA) sequence and multi-trait morphological variation. RESULTS: The striped skink exhibits a basic longitudinal organization of mtDNA diversity, with three major mitochondrial lineages inhabiting northern Africa, the eastern Mediterranean coast, and Turkey/Iran. Remarkably, these lineages are of pre-Quaternary origin, and are characterized by p-distances of 9-10%. In addition, within each of these lineages a more recent Quaternary genetic diversification was observed, as evidenced by deep subclades and high haplotype diversity especially in the Turkish/Iranian and eastern Mediterranean lineages. Consistent with the genetic variation, our morphological analysis revealed that the majority of morphological traits show significant mean differences between specimens from northern Africa, the eastern Mediterranean coast, and Turkey/Iran, suggesting lineage-specific trait evolution. In addition, a subset of traits exhibits clinal variation along the eastern Mediterranean coast, potentially indicating selection gradients at the geographic transition from northern Africa to Anatolia. The existence of allopatric, morphologically and genetically divergent lineages suggests that Heremites vittatus might represent a complex with several taxa. CONCLUSIONS: Our work demonstrates that early divergence events in the Pliocene, likely driven by both climatic and geological factors, established the longitudinal patterns and distribution of Heremites vittatus. Subsequent radiation during the Pleistocene generated the genetic and morphological diversity observed today. Our study provides further evidence that longitudinal diversity patterns and species distributions in the Middle East and northern Africa were shaped by complex evolutionary processes, involving the region's intricate geological history, climatic oscillations, and the presence of the Sahara.


Subject(s)
Lizards/classification , Lizards/genetics , Africa, Northern , Animals , Biodiversity , Biological Evolution , Cytochromes b/genetics , DNA, Mitochondrial/genetics , Genetic Variation , Lizards/anatomy & histology , Middle East , Phylogeny , Phylogeography , Reptilian Proteins/genetics , Sequence Analysis, DNA
17.
J Nanosci Nanotechnol ; 17(3): 1547-554, 2017 03.
Article in English | MEDLINE | ID: mdl-29693339

ABSTRACT

Filled cobalt-antimony based skutterudites have proven themselves as very promising thermoelectric materials for generator applications in an intermediate temperature range between 400 and 800 K due to their high figure of merit. Besides the functional thermoelectric properties also the skutterudites' mechanical properties play an important role to withstand external mechanical and internal thermomechanical loads during operation. Properties of interest are hardness as well as fracture toughness and resistance to fatigue. Carbon nano tubes are well known for their high tensile strength and may therefore be used to increase the mechanical strength of composite materials. Additionally, the thermoelectric properties of the composite material might benefit from the high electrical conductivity of carbon nano tubes and increased phonon scattering at interfaces between matrix and carbon nano tube. A main precondition for benefiting from embedded nano-tubes is to achieve a homogeneous distribution of the CNTs and good adhesion between carbon nano tube and matrix material. In this work we present the influence of the introduction of multi-walled carbon nano tubes on the thermoelectric and mechanical properties of p-type skutterudites Ce(0.14)La(0.06)Co(2)Fe(2)Sb(12). The influence of different carbon nano tube concentrations and preparation routes on the resulting composite material's thermoelectric, mechanical and microstructural properties is studied. A reduction of electrical and thermal conductivity as well as fracture strength is observed with increasing carbon nano tube content which is attributed to strong agglomeration of the nano tubes. The results underline the pivotal role of a homogeneous distribution of the carbon nano tubes for improving the mechanical properties of skutterudites.

18.
Biol Lett ; 12(8)2016 Aug.
Article in English | MEDLINE | ID: mdl-27555650

ABSTRACT

Most mammals and approximately 20% of squamates (lizards and snakes) are viviparous, whereas all crocodilians, birds and turtles are oviparous. Viviparity evolved greater than 100 times in squamates, including multiple times in Mabuyinae (Reptilia: Scincidae), making this group ideal for studying the evolution of nutritional patterns associated with viviparity. Previous studies suggest that extreme matrotrophy, the support of virtually all of embryonic development by maternal nutrients, evolved as many as three times in Mabuyinae: in Neotropical Mabuyinae (63 species), Eumecia (2 species; Africa) and Trachylepis ivensii (Africa). However, no explicit phylogenetic hypotheses exist for understanding the evolution of extreme matrotrophy. Using multilocus DNA data, we inferred a species tree for Mabuyinae that implies that T. ivensii (here assigned to the resurrected genus Lubuya) is sister to Eumecia, suggesting that extreme matrotrophy evolved only once in African mabuyine skinks.


Subject(s)
Lizards , Animals , Phylogeny , Snakes , Turtles
19.
Evolution ; 70(8): 1717-33, 2016 08.
Article in English | MEDLINE | ID: mdl-27312525

ABSTRACT

The niche-filling process predicted by the "ecological opportunity" (EO) model is an often-invoked mechanism for generating exceptional diversity in island colonizers. Whether the same process governs lineage accumulation and trait disparity during continental colonization events is less clear. Here, we test this prediction by investigating the rate dynamics and trait evolution of one of Africa's most widespread amphibian colonizers, the true toads (Bufonidae). By reconstructing the most complete molecular phylogeny of African Bufonidae to date, we find that the diversification of lineages in Africa best conforms to a constant rate model throughout time and across subclades, with little support for EO. Evolutionary rates of life-history traits have similarly been constant over time. However, an analysis of generalists and specialists showed a shift toward higher speciation rates associated with habitat specialization. The overall lack of EO signal can be interpreted in a number of ways and we propose several explanations. Firstly, methodological issues might preclude the detection of EO. Secondly, colonizers might not experience true EO conditions and due to the size, ecological heterogeneity and age of landmasses, the diversification processes might be more complex. Thirdly, lower speciation rates of habitat generalists may have affected overall proliferation of lineages.


Subject(s)
Biodiversity , Bufonidae/classification , Bufonidae/physiology , Genetic Speciation , Life History Traits , Phylogeny , Animals , Body Size , Bufonidae/genetics , Ovum/physiology , Reproduction , Sequence Analysis, DNA
20.
Mol Phylogenet Evol ; 100: 409-423, 2016 07.
Article in English | MEDLINE | ID: mdl-27118179

ABSTRACT

African snake-eyed skinks are relatively small lizards of the genera Panaspis and Afroablepharus. Species allocation of these genera frequently changed during the 20th century based on morphology, ecology, and biogeography. Members of these genera occur primarily in savanna habitats throughout sub-Saharan Africa and include species whose highly conserved morphology poses challenges for taxonomic studies. We sequenced two mitochondrial (16S and cyt b) and two nuclear genes (PDC and RAG1) from 76 Panaspis and Afroablepharus samples from across eastern, central, and southern Africa. Concatenated gene-tree and divergence-dating analyses were conducted to infer phylogenies and biogeographic patterns. Molecular data sets revealed several cryptic lineages, with most radiations occurring during the mid-Miocene to Pliocene. We infer that rifting processes (including the formation of the East African Rift System) and climatic oscillations contributed to the expansion and contraction of savannas, and caused cladogenesis in snake-eyed skinks. Species in Panaspis and Afroablepharus used in this study, including type species for both genera, formed a monophyletic group. As a result, the latter genus should be synonymized with the former, which has priority. Conservatively, we continue to include the West African species P. breviceps and P. togoensis within an expanded Panaspis, but note that they occur in relatively divergent clades, and their taxonomic status may change with improved taxon sampling. Divergence estimates and cryptic speciation patterns of snake-eyed skinks were consistent with previous studies of other savanna vertebrate lineages from the same areas examined in this study.


Subject(s)
Lizards/genetics , Africa South of the Sahara , Africa, Southern , Animals , Anura/genetics , Base Sequence , DNA, Mitochondrial/genetics , Evolution, Molecular , Genetic Speciation , Grassland , Lizards/classification , Multilocus Sequence Typing , Phylogeny , Reptilian Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL