Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters








Database
Language
Publication year range
1.
Cancers (Basel) ; 13(14)2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34298830

ABSTRACT

The ubiquitin E3 ligase TNF Receptor Associated Factor 6 (TRAF6) participates in a large number of different biological processes including innate immunity, differentiation and cell survival, raising the need to specify and shape the signaling output. Here, we identify a lipopolysaccharide (LPS)-dependent increase in TRAF6 association with the kinase IKKε (inhibitor of NF-κB kinase subunit ε) and IKKε-mediated TRAF6 phosphorylation at five residues. The reconstitution of TRAF6-deficient cells, with TRAF6 mutants representing phosphorylation-defective or phospho-mimetic TRAF6 variants, showed that the phospho-mimetic TRAF6 variant was largely protected from basal ubiquitin/proteasome-mediated degradation, and also from autophagy-mediated decay in autolysosomes induced by metabolic perturbation. In addition, phosphorylation of TRAF6 and its E3 ligase function differentially shape basal and LPS-triggered signaling networks, as revealed by phosphoproteome analysis. Changes in LPS-triggered phosphorylation networks of cells that had experienced autophagy are partially dependent on TRAF6 and its phosphorylation status, suggesting an involvement of this E3 ligase in the interplay between metabolic and inflammatory circuits.

2.
iScience ; 19: 527-544, 2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31442668

ABSTRACT

Membraneless organelles (MLOs) are liquid-like subcellular compartments providing spatiotemporal control to biological processes. This study reveals that cellular stress leads to the incorporation of the adaptor protein SINTBAD (TBKBP1) into membraneless, cytosolic speckles. Determination of the interactome identified >100 proteins forming constitutive and stress-inducible members of an MLO that we termed SINT-speckles. SINT-speckles partially colocalize with activated TBK1, and deletion of SINTBAD and the SINT-speckle component AZI2 leads to impaired TBK1 phosphorylation. Dynamic formation of SINT-speckles is positively controlled by the acetyltransferase KAT2A (GCN5) and antagonized by heat shock protein-mediated chaperone activity. SINT-speckle formation is also inhibited by the autophagy-initiating kinases ULK1/2, and knockdown of these kinases prevented focal TBK1 phosphorylation in a pathway-specific manner. The phlebovirus-encoded non-structural protein S enhances ULK1-mediated TBK1 phosphorylation and shows a stress-induced translocation to SINT-speckles, raising the possibility that viruses can also target this signaling hub to manipulate host cell functions.

3.
Antioxid Redox Signal ; 23(1): 85-98, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-24359078

ABSTRACT

SIGNIFICANCE: The expression and/or activity of histone deacetylases (HDACs) can be regulated by a variety of environmental conditions, including inflammation and oxidative stress. These events result in diminished or exaggerated protein acetylation, both of which can be causative for many ailments. While the anti-inflammatory activity of HDAC inhibitors (HDACis) is well known, recent studies started unraveling details of the molecular mechanisms underlying the pro-inflammatory function of HDACs. RECENT ADVANCES: Recent evidence shows that HDACs are found in association with transcribed regions and ensure proper transcription by maintaining acetylation homeostasis. We also discuss current insights in the molecular mechanisms mediating acetylation-dependent inhibition of pro-inflammatory transcription factors of the NF-κB, HIF-1, IRF, and STAT families. CRITICAL ISSUES: The high number of acetylations and the complexity of the regulatory consequences make it difficult to assign biological effects directly to a single acetylation event. The vast majority of acetylated proteins are nonhistone proteins, and it remains to be shown whether the therapeutic effects of HDACis are attributable to altered histone acetylation. FUTURE DIRECTIONS: In the traditional view, only exaggerated acetylation is harmful and causative for diseases. Recent data show the relevance of acetylation homeostasis and suggest that both diminished and inflated acetylation can enable the development of ailments. Since acetylation of nonhistone proteins is essential for the induction of a substantial part of the inflammatory gene expression program, HDACis are more than "epigenetic drugs." The identification of substrates for individual HDACs will be the prerequisite for the adequate use of highly specific HDACis.


Subject(s)
Gene Expression , Histone Deacetylases/metabolism , Inflammation/metabolism , Transcription Factors/metabolism , Acetylation , Animals , Epigenesis, Genetic , Histone Acetyltransferases , Humans
4.
Biol Chem ; 395(4): 375-86, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24225127

ABSTRACT

The family of homeodomain interacting protein kinases (HIPKs) consists of four related kinases, HIPK1 to HIPK4. These serine/threonine kinases are evolutionary conserved and derive from the yeast kinase Yak1. The largest group of HIPK phosphorylation substrates is represented by transcription factors and chromatin-associated regulators of gene expression, thus transferring HIPK-derived signals into changes of gene expression programs. The HIPKs mainly function as regulators of developmental processes and as integrators of a wide variety of stress signals. A number of conditions representing precarious situations, such as DNA damage, hypoxia, reactive oxygen intermediates and metabolic stress affect the function of HIPKs. The kinases function as integrators for these stress signals and feed them into many different downstream effector pathways that serve to cope with these precarious situations. HIPKs do not function as essential core components in the different stress signaling pathways, but rather serve as modulators of signal output and as connectors of different stress signaling pathways. Their central role as signaling hubs with the ability to shape many downstream effector pathways frequently implies them in proliferative diseases such as cancer or fibrosis.


Subject(s)
Oxidative Stress , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Animals , Cell Proliferation , DNA Damage , Humans , Phosphorylation , Protein Structure, Tertiary
5.
J Immunol ; 187(4): 1609-16, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21734074

ABSTRACT

Full-length IL-33 is a member of the IL-1 family of cytokines, which can act in an autocrine or paracrine manner by binding to the IL-33R on several different target cell types. In addition, IL-33 can act in an intracrine fashion by translocating to the nucleus, where it binds to the chromatin and modulates gene expression. In this article, we report that full-length IL-33, but not mature IL-33, interacts with the transcription factor NF-κB. This interaction occurs between the N-terminal part of IL-33 from aa 66-109 and the N-terminal Rel homology domain of NF-κB p65. Coimmunoprecipitation experiments in cells overexpressing IL-33 or endogenously expressing IL-33 revealed rhIL-1ß-stimulated association between IL-33 and p65, whereas binding to the p50 subunit was constitutive. The biological consequence of IL-33/NF-κB complex formation was reduction in NF-κB p65 binding to its cognate DNA and impairment of p65-triggered transactivation. Overexpression of IL-33 resulted in a reduction and delay in the rhIL-1ß-stimulated expression of endogenous NF-κB target genes such as IκBα, TNF-α, and C-REL. We suggest that nuclear IL-33 sequesters nuclear NF-κB and reduces NF-κB-triggered gene expression to dampen proinflammatory signaling.


Subject(s)
Interleukins/immunology , NF-kappa B p50 Subunit/immunology , Transcription Factor RelA/immunology , Transcription, Genetic/immunology , Animals , HEK293 Cells , Humans , Interleukin-18/genetics , Interleukin-18/immunology , Interleukin-18/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Interleukin-1beta/metabolism , Interleukin-33 , Interleukins/genetics , Interleukins/metabolism , Mast Cells/immunology , Mast Cells/metabolism , Mice , NF-kappa B p50 Subunit/genetics , NF-kappa B p50 Subunit/metabolism , Th2 Cells/immunology , Th2 Cells/metabolism , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism , Transcription, Genetic/genetics
6.
EMBO Rep ; 12(2): 129-35, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21212807

ABSTRACT

Adaptor proteins allow temporal and spatial coordination of signalling. In this study, we show SUMOylation of the adaptor protein TANK and its interacting kinase TANK-binding kinase 1 (TBK1). Modification of TANK by the small ubiquitin-related modifier (SUMO) at the evolutionarily conserved Lys 282 is triggered by the kinase activities of IκB kinase ɛ (IKKɛ) and TBK1. Stimulation of TLR7 leads to inducible SUMOylation of TANK, which in turn weakens the interaction with IKKɛ and thus relieves the negative function of TANK on signal propagation. Reconstitution experiments show that an absence of TANK SUMOylation impairs inducible expression of distinct TLR7-dependent target genes, providing a molecular mechanism that allows the control of TANK function.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , SUMO-1 Protein/metabolism , Toll-Like Receptor 7/metabolism , Cysteine Endopeptidases , Endopeptidases/metabolism , HEK293 Cells , Humans , I-kappa B Kinase/metabolism , Phosphorylation , Poly-ADP-Ribose Binding Proteins , Protein Inhibitors of Activated STAT/metabolism , Recombinant Fusion Proteins/metabolism , Signal Transduction
7.
EMBO J ; 29(22): 3750-61, 2010 Nov 17.
Article in English | MEDLINE | ID: mdl-20940704

ABSTRACT

Protein kinases are organized in hierarchical networks that are assembled and regulated by scaffold proteins. Here, we identify the evolutionary conserved WD40-repeat protein Han11 as an interactor of the kinase homeodomain-interacting protein kinase 2 (HIPK2). In vitro experiments showed the direct binding of Han11 to HIPK2, but also to the kinases DYRK1a, DYRK1b and mitogen-activated protein kinase kinase kinase 1 (MEKK1). Han11 was required to allow coupling of MEKK1 to DYRK1 and HIPK2. Knockdown experiments in Caenorhabditis elegans showed the relevance of the Han11 orthologs Swan-1 and Swan-2 for the osmotic stress response. Downregulation of Han11 in human cells lowered the threshold and amplitude of HIPK2- and MEKK1-triggered signalling events and changed the kinetics of kinase induction. Han11 knockdown changed the amplitude and time dependence of HIPK2-driven transcription in response to DNA damage and also interfered with MEKK1-triggered gene expression and stress signalling. Impaired signal transmission also occurred upon interference with stoichiometrically assembled signalling complexes by Han11 overexpression. Collectively, these experiments identify Han11 as a novel scaffold protein regulating kinase signalling by HIPK2 and MEKK1.


Subject(s)
Carrier Proteins/metabolism , MAP Kinase Kinase Kinase 1/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Adaptor Proteins, Signal Transducing , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Carrier Proteins/genetics , Cell Line , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation , Gene Knockdown Techniques , Humans , Osmotic Pressure , Dyrk Kinases
8.
EMBO Rep ; 10(4): 381-6, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19270718

ABSTRACT

The nuclear factor-kappaB (NF-kappaB) transcription factor system is a crucial component that controls several important biological functions, thus raising the need for mechanisms that ensure the correct termination of its activity. Here, we identify a new phosphorylation/ubiquitination switch in the NF-kappaB network that controls the stability of the transactivating p65 subunit. Tumour necrosis factor-induced phosphorylation of p65 at Ser468 allows binding of COMMD1 and cullin 2, components of a multimeric ubiquitin ligase complex mediating p65 ubiquitination. Mutation of p65 at Ser468 largely prevents p65 ubiquitination and proteasomal degradation. Inducible p65 elimination is restricted to a subset of NF-kappaB target genes such as Icam1. Accordingly, chromatin immunoprecipitation experiments reveal the selective recruitment of Ser468-phosphorylated p65 and COMMD1 to the Icam1 promoter. Phosphorylation of p65 at Ser468 leads to ubiquitin/proteasome-dependent removal of chromatin-bound p65, thus contributing to the selective termination of NF-kappaB-dependent gene expression.


Subject(s)
Proteasome Endopeptidase Complex/metabolism , Proteins/metabolism , Transcription Factor RelA/metabolism , Adaptor Proteins, Signal Transducing , Animals , Cells, Cultured , Chromatin Immunoprecipitation , Interleukin-1/pharmacology , Lipopolysaccharides/pharmacology , Mice , Oligonucleotide Array Sequence Analysis , Phosphorylation/drug effects , Promoter Regions, Genetic/genetics , Tumor Necrosis Factor-alpha/pharmacology , Ubiquitination/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL