Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Bioorg Chem ; 153: 107887, 2024 Oct 12.
Article in English | MEDLINE | ID: mdl-39423771

ABSTRACT

Class I HDACs are considered promising targets for cancer due to their role in epigenetic modifications. The main challenges in developing a new, potent and non-toxic class I HDAC inhibitor are selectivity and appropriate pharmacokinetics. The PROTAC technique (Proteolysis Targeting Chimera) is a new method in drug development for the production of active substances that can degrade a protein of interest (POI) instead of inhibiting it. This technique will open the era to produce selective and potent drugs with a high margin of safety. Previously, we reported different inhibitors targeting class I HDACs functionalized with aminobenzamide or hydroxamate groups. In the current research work, we will employ PROTAC technique to develop class I HDAC degraders based on our previously reported inhibitors. We synthesized two series of aminobenzamide-based PROTACs and hydroxamate-based PROTACs and tested them in vitro against class I HDACs. To ensure their degradation, all of them were screened against HDAC2 as representative example of class I. The best candidates were evaluated at different concentrations at various HDAC subtypes. This resulted in the PROTAC (32a) (HI31.1) that degrades HDAC8 with a DC50 of 8.9 nM with a proper margin of selectivity against other isozymes. Moreover, PROTAC 32a is able to degrade HDAC6 with DC50 = 14.3 nM. Apoptotic study on leukemic cells (MV-4-11) displayed more than 50 % apoptosis took place at 100 nM. PROTAC 32a (HI31.1) showed a good margin of safety against normal cell line and proper chemical stability.

2.
Arch Pharm (Weinheim) ; : e2400437, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39291901

ABSTRACT

Class I histone deacetylases (HDACs) are considered promising targets in current cancer research. To obtain subtype-selective and potent HDAC inhibitors, we used the aminobenzamide scaffold as the zinc-binding group and prepared new derivatives with a pyrazole ring as the linking group. The synthesized compounds were analyzed in vitro using an enzymatic assay against HDAC1, -2, and -3. Compounds 12b, 15b, and 15i were found to be potent HDAC1 inhibitors, also in comparison to the reference compounds entinostat and tacedinaline, with IC50 values of 0.93, 0.22, and 0.68 µM, respectively. The best compounds were measured for their cellular effect and target engagement in acute myeloid leukemia (AML) cells. In addition, we studied the interaction of the compounds with HDAC subtypes using docking and molecular dynamic simulations. In summary, we have developed a new chemotype of HDAC1 inhibitors that can be used for further structure-based optimization.

3.
Nat Commun ; 15(1): 5570, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956053

ABSTRACT

Despite the development of novel therapies for acute myeloid leukemia, outcomes remain poor for most patients, and therapeutic improvements are an urgent unmet need. Although treatment regimens promoting differentiation have succeeded in the treatment of acute promyelocytic leukemia, their role in other acute myeloid leukemia subtypes needs to be explored. Here we identify and characterize two lysine deacetylase inhibitors, CM-444 and CM-1758, exhibiting the capacity to promote myeloid differentiation in all acute myeloid leukemia subtypes at low non-cytotoxic doses, unlike other commercial histone deacetylase inhibitors. Analyzing the acetylome after CM-444 and CM-1758 treatment reveals modulation of non-histone proteins involved in the enhancer-promoter chromatin regulatory complex, including bromodomain proteins. This acetylation is essential for enhancing the expression of key transcription factors directly involved in the differentiation therapy induced by CM-444/CM-1758 in acute myeloid leukemia. In summary, these compounds may represent effective differentiation-based therapeutic agents across acute myeloid leukemia subtypes with a potential mechanism for the treatment of acute myeloid leukemia.


Subject(s)
Cell Differentiation , Epigenesis, Genetic , Histone Deacetylase Inhibitors , Leukemia, Myeloid, Acute , Humans , Cell Differentiation/drug effects , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Epigenesis, Genetic/drug effects , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Cell Line, Tumor , Acetylation/drug effects , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Regulation, Leukemic/drug effects , Animals
4.
Arch Pharm (Weinheim) ; 357(10): e2400486, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38996352

ABSTRACT

AlphaFold is an artificial intelligence approach for predicting the three-dimensional (3D) structures of proteins with atomic accuracy. One challenge that limits the use of AlphaFold models for drug discovery is the correct prediction of folding in the absence of ligands and cofactors, which compromises their direct use. We have previously described the optimization and use of the histone deacetylase 11 (HDAC11) AlphaFold model for the docking of selective inhibitors such as FT895 and SIS17. Based on the predicted binding mode of FT895 in the optimized HDAC11 AlphaFold model, a new scaffold for HDAC11 inhibitors was designed, and the resulting compounds were tested in vitro against various HDAC isoforms. Compound 5a proved to be the most active compound with an IC50 of 365 nM and was able to selectively inhibit HDAC11. Furthermore, docking of 5a showed a binding mode comparable to FT895 but could not adopt any reasonable poses in other HDAC isoforms. We further supported the docking results with molecular dynamics simulations that confirmed the predicted binding mode. 5a also showed promising activity with an EC50 of 3.6 µM on neuroblastoma cells.


Subject(s)
Antineoplastic Agents , Drug Design , Histone Deacetylase Inhibitors , Histone Deacetylases , Neuroblastoma , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Artificial Intelligence , Cell Line, Tumor , Dose-Response Relationship, Drug , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylases/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Neuroblastoma/drug therapy , Neuroblastoma/pathology , Structure-Activity Relationship
5.
Future Med Chem ; 16(9): 859-872, 2024.
Article in English | MEDLINE | ID: mdl-38623995

ABSTRACT

Background: Histone deacetylase inhibitors (HDACIs) are important as anticancer agents. Objective: This study aimed to investigate some key structural features of HDACIs via the design, synthesis and biological evaluation of novel benzamide-based derivatives. Methods: Novel structures, designed using a molecular modification approach, were synthesized and biologically evaluated. Results: The results indicated that a subset of molecules with CH3/NH2 at R2 position possess selective antiproliferative activity. However, only those with an NH2 group showed HDACI activity. Importantly, the shorter the molecule length, the stronger HDACI. Among all, 7j was the most potent HDAC1-3 inhibitor and antiproliferative compound. Conclusion: The results of the present investigation could provide valuable structural knowledge applicable for the development of the HDACIs and benzamide-based antiproliferative agents in the future.


[Box: see text].


Subject(s)
Antineoplastic Agents , Benzamides , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Histone Deacetylase Inhibitors , Histone Deacetylases , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/chemical synthesis , Humans , Benzamides/pharmacology , Benzamides/chemistry , Benzamides/chemical synthesis , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Histone Deacetylases/metabolism , Molecular Structure , Cell Line, Tumor , Molecular Docking Simulation
6.
Int J Mol Sci ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38279359

ABSTRACT

HDAC11 is a class IV histone deacylase with no crystal structure reported so far. The catalytic domain of HDAC11 shares low sequence identity with other HDAC isoforms, which makes conventional homology modeling less reliable. AlphaFold is a machine learning approach that can predict the 3D structure of proteins with high accuracy even in absence of similar structures. However, the fact that AlphaFold models are predicted in the absence of small molecules and ions/cofactors complicates their utilization for drug design. Previously, we optimized an HDAC11 AlphaFold model by adding the catalytic zinc ion and minimization in the presence of reported HDAC11 inhibitors. In the current study, we implement a comparative structure-based virtual screening approach utilizing the previously optimized HDAC11 AlphaFold model to identify novel and selective HDAC11 inhibitors. The stepwise virtual screening approach was successful in identifying a hit that was subsequently tested using an in vitro enzymatic assay. The hit compound showed an IC50 value of 3.5 µM for HDAC11 and could selectively inhibit HDAC11 over other HDAC subtypes at 10 µM concentration. In addition, we carried out molecular dynamics simulations to further confirm the binding hypothesis obtained by the docking study. These results reinforce the previously presented AlphaFold optimization approach and confirm the applicability of AlphaFold models in the search for novel inhibitors for drug discovery.


Subject(s)
Models, Chemical , Molecular Dynamics Simulation , Molecular Docking Simulation , Catalytic Domain , Drug Design , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry
7.
Arch Pharm (Weinheim) ; 357(2): e2300536, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37932028

ABSTRACT

Although histone deacetylase (HDAC) inhibitors show promise in treating various types of hematologic malignancies, they have some limitations, including poor pharmacokinetics and off-target side effects. Prodrug design has shown promise as an approach to improve pharmacokinetic properties and to improve target tissue specificity. In this work, several bioreductive prodrugs for class I HDACs were designed based on known selective HDAC inhibitors. The zinc-binding group of the HDAC inhibitors was masked with various nitroarylmethyl residues to make them substrates of nitroreductase (NTR). The developed prodrugs showed weak HDAC inhibitory activity compared to their parent inhibitors. The prodrugs were tested against wild-type and NTR-transfected THP1 cells. Cellular assays showed that both 2-nitroimidazole-based prodrugs 5 and 6 were best activated by the NTR and exhibited potent activity against NTR-THP1 cells. Compound 6 showed the highest cellular activity (GI50 = 77 nM) and exhibited moderate selectivity. Moreover, activation of prodrug 6 by NTR was confirmed by liquid chromatography-mass spectrometry analysis, which showed the release of the parent inhibitor after incubation with Escherichia coli NTR. Thus, compound 6 can be considered a novel prodrug selective for class I HDACs, which could be used as a good starting point for increasing selectivity and for further optimization.


Subject(s)
Leukemia, Myeloid, Acute , Prodrugs , Humans , Histone Deacetylase Inhibitors/pharmacology , Prodrugs/pharmacology , Prodrugs/chemistry , Genetic Therapy , Structure-Activity Relationship , Escherichia coli , Leukemia, Myeloid, Acute/drug therapy
8.
Sci Rep ; 13(1): 21006, 2023 11 29.
Article in English | MEDLINE | ID: mdl-38030668

ABSTRACT

We report a series of 1,3-diphenylureido hydroxamate HDAC inhibitors evaluated against sensitive and drug-resistant P. falciparum strains. Compounds 8a-d show potent antiplasmodial activity, indicating that a phenyl spacer allows improved potency relative to cinnamyl and di-hydrocinnamyl linkers. In vitro, mechanistic studies demonstrated target activity for PfHDAC1 on a recombinant level, which agreed with cell quantification of the acetylated histone levels. Compounds 6c, 7c, and 8c, identified as the most active in phenotypic assays and PfHDAC1 enzymatic inhibition. Compound 8c stands out as a remarkable inhibitor, displaying an impressive 85% inhibition of PfHDAC1, with an IC50 value of 0.74 µM in the phenotypic screening on Pf3D7 and 0.8 µM against multidrug-resistant PfDd2 parasites. Despite its potent inhibition of PfHDAC1, 8c remains the least active on human HDAC1, displaying remarkable selectivity. In silico studies suggest that the phenyl linker has an ideal length in the series for permitting effective interactions of the hydroxamate with PfHDAC1 and that this compound series could bind as well as in HsHDAC1. Taken together, these results highlight the potential of diphenylurea hydroxamates as a privileged scaffold for the generation of potent antimalarial HDAC inhibitors with improved selectivity over human HDACs.


Subject(s)
Antimalarials , Folic Acid Antagonists , Humans , Histone Deacetylase Inhibitors/pharmacology , Antimalarials/pharmacology , Hydroxamic Acids/pharmacology , Folic Acid Antagonists/pharmacology , Structure-Activity Relationship , Histone Deacetylase 1
9.
J Med Chem ; 66(21): 14787-14814, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37902787

ABSTRACT

Dysregulation of both tubulin deacetylases sirtuin 2 (Sirt2) and the histone deacetylase 6 (HDAC6) has been associated with the pathogenesis of cancer and neurodegeneration, thus making these two enzymes promising targets for pharmaceutical intervention. Herein, we report the design, synthesis, and biological characterization of the first-in-class dual Sirt2/HDAC6 inhibitors as molecular tools for dual inhibition of tubulin deacetylation. Using biochemical in vitro assays and cell-based methods for target engagement, we identified Mz325 (33) as a potent and selective inhibitor of both target enzymes. Inhibition of both targets was further confirmed by X-ray crystal structures of Sirt2 and HDAC6 in complex with building blocks of 33. In ovarian cancer cells, 33 evoked enhanced effects on cell viability compared to single or combination treatment with the unconjugated Sirt2 and HDAC6 inhibitors. Thus, our dual Sirt2/HDAC6 inhibitors are important new tools to study the consequences and the therapeutic potential of dual inhibition of tubulin deacetylation.


Subject(s)
Sirtuin 2 , Tubulin , Histone Deacetylase 6 , Sirtuin 2/metabolism , Tubulin/metabolism , Histone Deacetylase Inhibitors/pharmacology , Acetylation
10.
ACS Chem Biol ; 18(7): 1594-1610, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37392419

ABSTRACT

Histone deacetylase (HDAC) inhibitors used in the clinic typically contain a hydroxamate zinc-binding group (ZBG). However, more recent work has shown that the use of alternative ZBGs, and, in particular, the heterocyclic oxadiazoles, can confer higher isoenzyme selectivity and more favorable ADMET profiles. Herein, we report on the synthesis and biochemical, crystallographic, and computational characterization of a series of oxadiazole-based inhibitors selectively targeting the HDAC6 isoform. Surprisingly, but in line with a very recent finding reported in the literature, a crystal structure of the HDAC6/inhibitor complex revealed that hydrolysis of the oxadiazole ring transforms the parent oxadiazole into an acylhydrazide through a sequence of two hydrolytic steps. An identical cleavage pattern was also observed both in vitro using the purified HDAC6 enzyme as well as in cellular systems. By employing advanced quantum and molecular mechanics (QM/MM) and QM calculations, we elucidated the mechanistic details of the two hydrolytic steps to obtain a comprehensive mechanistic view of the double hydrolysis of the oxadiazole ring. This was achieved by fully characterizing the reaction coordinate, including identification of the structures of all intermediates and transition states, together with calculations of their respective activation (free) energies. In addition, we ruled out several (intuitively) competing pathways. The computed data (ΔG‡ ≈ 21 kcal·mol-1 for the rate-determining step of the overall dual hydrolysis) are in very good agreement with the experimentally determined rate constants, which a posteriori supports the proposed reaction mechanism. We also clearly (and quantitatively) explain the role of the -CF3 or -CHF2 substituent on the oxadiazole ring, which is a prerequisite for hydrolysis to occur. Overall, our data provide compelling evidence that the oxadiazole warheads can be efficiently transformed within the active sites of target metallohydrolases to afford reaction products possessing distinct selectivity and inhibition profiles.


Subject(s)
Histone Deacetylase Inhibitors , Oxadiazoles , Histone Deacetylase 6/chemistry , Hydrolysis , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/chemistry
11.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37513880

ABSTRACT

Histone deacetylases (HDAC) represent promising epigenetic targets for several diseases including different cancer types. The HDAC inhibitors approved to date are pan-HDAC inhibitors and most show a poor selectivity profile, side effects, and in particular hydroxamic-acid-based inhibitors lack good pharmacokinetic profiles. Therefore, the development of isoform-selective non-hydroxamic acid HDAC inhibitors is a highly regarded field in medicinal chemistry. In this study, we analyzed different ligand-based and structure-based drug design techniques to predict the binding mode and inhibitory activity of recently developed alkylhydrazide HDAC inhibitors. Alkylhydrazides have recently attracted more attention as they have shown promising effects in various cancer cell lines. In this work, pharmacophore models and atom-based quantitative structure-activity relationship (QSAR) models were generated and evaluated. The binding mode of the studied compounds was determined using molecular docking as well as molecular dynamics simulations and compared with known crystal structures. Calculated free energies of binding were also considered to generate QSAR models. The created models show a good explanation of in vitro data and were used to develop novel HDAC3 inhibitors.

12.
J Adv Res ; 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37467961

ABSTRACT

INTRODUCTION: Posttranslational modification of proteins by reversible acetylation regulates key biological processes. Histone deacetylases (HDACs) catalyze protein deacetylation and are frequently dysregulated in tumors. This has spurred the development of HDAC inhibitors (HDACi). Such epigenetic drugs modulate protein acetylation, eliminate tumor cells, and are approved for the treatment of blood cancers. OBJECTIVES: We aimed to identify novel, nanomolar HDACi with increased potency over existing agents and selectivity for the cancer-relevant class I HDACs (HDAC1,-2,-3,-8). Moreover, we wanted to define how such drugs control the apoptosis-autophagy interplay. As test systems, we used human leukemic cells and embryonic kidney-derived cells. METHODS: We synthesized novel pyrimidine-hydroxamic acid HDACi (KH9/KH16/KH29) and performed in vitro activity assays and molecular modeling of their direct binding to HDACs. We analyzed how these HDACi affect leukemic cell fate, acetylation, and protein expression with flow cytometry and immunoblot. The publicly available DepMap database of CRISPR-Cas9 screenings was used to determine sensitivity factors across human leukemic cells. RESULTS: Novel HDACi show nanomolar activity against class I HDACs. These agents are superior to the clinically used hydroxamic acid HDACi SAHA (vorinostat). Within the KH-series of compounds, KH16 (yanostat) is the most effective inhibitor of HDAC3 (IC50 = 6 nM) and the most potent inducer of apoptosis (IC50 = 110 nM; p < 0.0001) in leukemic cells. KH16 though spares embryonic kidney-derived cells. Global data analyses of knockout screenings verify that HDAC3 is a dependency factor in 115 human blood cancer cells of different lineages, independent of mutations in the tumor suppressor p53. KH16 alters pro- and anti-apoptotic protein expression, stalls cell cycle progression, and induces caspase-dependent processing of the autophagy proteins ULK1 and p62. CONCLUSION: These data reveal that HDACs are required to stabilize autophagy proteins through suppression of apoptosis in leukemic cells. HDAC3 appears as a valid anti-cancer target for pharmacological intervention.

13.
Angew Chem Int Ed Engl ; 62(25): e202301543, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37029095

ABSTRACT

Herein we report a mild, efficient, and epimerization-free method for the synthesis of peptide-derived 2-thiazolines and 5,6-dihydro-4H-1,3-thiazines based on a cyclodesulfhydration of N-thioacyl-2-mercaptoethylamine or N-thioacyl-3-mercaptopropylamine derivatives. The described reaction can be easily carried out in aqueous solutions at room temperature and it is triggered by change of the pH, leading to complex thiazoline or dihydrothiazine derivatives without epimerization in excellent to quantitative yields. The new method was applied in the total synthesis of the marine metabolite mollamide F, resulting in the revision of its stereochemistry.


Subject(s)
Mercaptoethylamines , Peptides
14.
Int J Mol Sci ; 24(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37108579

ABSTRACT

Lysine deacetylases, like histone deacetylases (HDACs) and sirtuins (SIRTs), are involved in many regulatory processes such as control of metabolic pathways, DNA repair, and stress responses. Besides robust deacetylase activity, sirtuin isoforms SIRT2 and SIRT3 also show demyristoylase activity. Interestingly, most of the inhibitors described so far for SIRT2 are not active if myristoylated substrates are used. Activity assays with myristoylated substrates are either complex because of coupling to enzymatic reactions or time-consuming because of discontinuous assay formats. Here we describe sirtuin substrates enabling direct recording of fluorescence changes in a continuous format. Fluorescence of the fatty acylated substrate is different when compared to the deacylated peptide product. Additionally, the dynamic range of the assay could be improved by the addition of bovine serum albumin, which binds the fatty acylated substrate and quenches its fluorescence. The main advantage of the developed activity assay is the native myristoyl residue at the lysine side chain avoiding artifacts resulting from the modified fatty acyl residues used so far for direct fluorescence-based assays. Due to the extraordinary kinetic constants of the new substrates (KM values in the low nM range, specificity constants between 175,000 and 697,000 M-1s-1) it was possible to reliably determine the IC50 and Ki values for different inhibitors in the presence of only 50 pM of SIRT2 using different microtiter plate formats.


Subject(s)
Sirtuin 3 , Sirtuins , Sirtuins/metabolism , Sirtuin 2/metabolism , Lysine , Sirtuin 1/metabolism , Sirtuin 3/metabolism , Peptides , Coloring Agents
15.
Methods Mol Biol ; 2589: 145-155, 2023.
Article in English | MEDLINE | ID: mdl-36255623

ABSTRACT

Class I histone deacetylase (HDAC) enzymes are key regulators of cell proliferation and are frequently dysregulated in cancer cells. Here we describe the synthesis of a novel series of class-I selective HDAC inhibitors containing anilinobenzamide moieties as ZBG connected with a central (piperazin-1-yl)pyrazine moiety. Compounds were tested in vitro against class-I HDAC1, 2, and 3 isoforms. Some highly potent HDAC inhibitors were obtained and were tested in pancreatic cancer cells and showed promising activity. Moreover, we summarize how the growth-inhibitory effects of these compounds can be determined in murine pancreatic cancer cell lines.


Subject(s)
Histone Deacetylase Inhibitors , Pancreatic Neoplasms , Humans , Mice , Animals , Histone Deacetylase Inhibitors/pharmacology , Pyrazines/pharmacology , Cell Line, Tumor , Histone Deacetylases/metabolism , Cell Proliferation , Protein Isoforms/metabolism , Pancreatic Neoplasms/drug therapy , Structure-Activity Relationship , Histone Deacetylase 1/metabolism
16.
Methods Mol Biol ; 2589: 411-428, 2023.
Article in English | MEDLINE | ID: mdl-36255640

ABSTRACT

Protein lysine acylation represents one of the most common post-translational modifications. Obviously, highly reactive metabolic intermediates, like thioesters and mixed anhydrides between phosphoric acid and organic acids, modify lysine residues spontaneously. Additionally, enzymes using acyl-CoAs as co-substrates transfer the acyl residue specifically to defined sequences within proteins. The counteracting enzymes are called histone deacetylases (HDACs), releasing the free lysine side chain. Such enzymatic activities are involved in different cellular processes like tumor progression, immune response, regulation of metabolism, and aging. Modulators of such enzymatic activities represent valuable tools in drug discovery. Therefore, direct and continuous assays to monitor enzymatic activity of HDACs are needed. Here we describe different assay formats allowing both monitoring of Zn2+-dependent HDACs via UV-Vis-spectroscopy and NAD+-dependent HDACs (sirtuins) by fluorescence-based assay formats. Additionally, we describe methods enabling efficient screening of HDAC-inhibitors via fluorescence displacement assays.


Subject(s)
Histones , Sirtuins , Lysine/metabolism , NAD/metabolism , Histone Deacetylases/metabolism , Sirtuins/metabolism , Phosphoric Acids/metabolism , Anhydrides
17.
Int J Mol Sci ; 23(21)2022 Oct 23.
Article in English | MEDLINE | ID: mdl-36361557

ABSTRACT

The protein lysine deacylases of the NAD+-dependent Sirtuin family contribute to metabolic regulation, stress responses, and aging processes, and the human Sirtuin isoforms, Sirt1-7, are considered drug targets for aging-related diseases. The nuclear isoform Sirt1 deacetylates histones and transcription factors to regulate, e.g., metabolic adaptations and circadian mechanisms, and it is used as a therapeutic target for Huntington's disease and psoriasis. Sirt1 is regulated through a multitude of mechanisms, including the interaction with regulatory proteins such as the inhibitors Tat and Dbc1 or the activator AROS. Here, we describe a molecular characterization of AROS and how it regulates Sirt1. We find that AROS is a partly intrinsically disordered protein (IDP) that inhibits rather than activates Sirt1. A biochemical characterization of the interaction including binding and stability assays, NMR spectroscopy, mass spectrometry, and a crystal structure of Sirtuin/AROS peptide complex reveal that AROS acts as a competitive inhibitor, through binding to the Sirt1 substrate peptide site. Our results provide molecular insights in the physiological regulation of Sirt1 by a regulator protein and suggest the peptide site as an opportunity for Sirt1-targeted drug development.


Subject(s)
Sirtuin 1 , Sirtuins , Humans , Cell Nucleus/metabolism , Histones , Sirtuin 1/metabolism , Sirtuins/metabolism , Transcription Factors/metabolism
18.
J Med Chem ; 65(24): 16313-16337, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36449385

ABSTRACT

Histone deacetylases (HDACs) are epigenetic regulators and additionally control the activity of non-histone substrates. We recently demonstrated that inhibition of HDAC8 overexpressed in various of cancers reduces hepatocellular carcinoma tumorigenicity in a T cell-dependent manner. Here, we present alkylated hydrazide-based class I HDAC inhibitors in which the n-hexyl side chain attached to the hydrazide moiety shows HDAC8 selectivity in vitro. Analysis of the mode of inhibition of the most promising compound 7d against HDAC8 revealed a substrate-competitive binding mode. 7d marked induced acetylation of the HDAC8 substrates H3K27 and SMC3 but not tubulin in CD4+ T lymphocytes, and significantly upregulated gene expressions for memory and effector functions. Furthermore, intraperitoneal injection of 7d (10 mg/kg) in C57BL/6 mice increased interleukin-2 expression in CD4+ T cells and CD8+ T cell proportion with no apparent toxicity. This study expands a novel chemotype of HDAC8 inhibitors with T cell modulatory properties for future therapeutic applications.


Subject(s)
Histone Deacetylase Inhibitors , Repressor Proteins , Mice , Animals , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Mice, Inbred C57BL , Histone Deacetylases/metabolism , Hydrazines
19.
Biochemistry ; 61(17): 1705-1722, 2022 09 06.
Article in English | MEDLINE | ID: mdl-35972884

ABSTRACT

Sirtuins are protein deacylases regulating metabolism and stress responses and implicated in aging-related diseases. Modulators of the human sirtuins 1-7 are sought as chemical tools and potential therapeutics, for example, for treatment of cancer. We were able to show that 3-aryl-mercapto-succinylated- and 3-benzyl-mercapto-succinylated peptide derivatives yield selective Sirt5 inhibitors with low nM Ki values. Here, we synthesized and characterized 3-aryl-mercapto-butyrylated peptide derivatives as effective and selective sirtuin 2 inhibitors with KD values in the low nanomolar range. According to kinetic measurements and microscale thermophoresis/surface plasmon resonance experiments, the respective inhibitors bind with the 3-aryl-mercapto moiety in the selectivity pocket of Sirtuin 2, inducing a rearrangement of the active site. In contrast, 3-aryl-mercapto-nonalyl or palmitoyl derivatives are characterized by a switch in the binding mode blocking both the hydrophobic channel by the fatty acyl chain and the nicotinamide pocket by the 3-aryl-mercapto moiety.


Subject(s)
Sirtuin 2 , Sirtuins , Catalytic Domain , Humans , Lysine/metabolism , Niacinamide , Peptides , Sirtuin 2/metabolism , Sirtuins/metabolism
20.
ACS Chem Biol ; 17(6): 1364-1375, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35639992

ABSTRACT

Zinc-dependent histone deacetylases (HDACs) and sirtuins (SIRT) represent two different classes of enzymes which are responsible for deacylation of modified lysine side chains. The repertoire of acyl residues on lysine side chains identified in vivo is rapidly growing, and very recently lysine lactoylation was described to be involved in metabolic reprogramming. Additionally, lysine pyruvoylation represents a marker for aging and liver cirrhosis. Here, we report a systematic analysis of acyl-specificity of human zinc-dependent HDAC and sirtuin isoforms. We identified HDAC3 as a robust delactoylase with several-thousand-fold higher activity as compared to SIRT2, which was claimed to be the major in vivo delactoylase. Additionally, we systematically searched for enzymes, capable of removing pyruvoyl residues from lysine side chains. Using model peptides, we uncovered high depyruvoylase activity for HDAC6 and HDAC8. Interestingly, such substrates have extremely low KM values for both HDAC isoforms, pointing to possible in vivo functions.


Subject(s)
Lysine , Sirtuin 2 , Aging , Histone Deacetylase Inhibitors , Histone Deacetylases , Humans , Lysine/chemistry , Protein Isoforms , Repressor Proteins/metabolism , Zinc
SELECTION OF CITATIONS
SEARCH DETAIL