Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters








Database
Language
Publication year range
1.
Regul Toxicol Pharmacol ; 124: 104977, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34174380

ABSTRACT

The National Toxicology Program (NTP) reported that chronic dietary exposure to 4-methylimidazole (4-MeI) increased the incidence of lung adenomas/carcinomas beyond the normally high spontaneous rate in B6C3F1 mice. To examine plausible modes of action (MoAs) for mouse lung tumors (MLTs) upon exposure to high levels of 4-MeI, and their relevance in assessing human risk, a systematic approach was used to identify and evaluate mechanistic data (in vitro and in vivo) in the primary and secondary literature, along with high-throughput screening assay data. Study quality, relevance, and activity of mechanistic data identified across the evidence-base were organized according to key characteristics of carcinogens (KCCs) to identify potential key events in known or novel MLT MoAs. Integration of these evidence streams provided confirmation that 4-MeI lacks genotoxic and cytotoxic activity with some evidence to support a lack of mitogenic activity. Further evaluation of contextual and chemical-specific characteristics of 4-MeI was consequently undertaken. Due to lack of genotoxicity, along with transcriptomic and histopathological lung changes up to 28 and 90 days of exposure, the collective evidence suggests MLTs observed following exposure to high levels of 4-MeI develop at a late stage in the mouse chronic bioassay, albeit the exact MoA remains unclear.


Subject(s)
Carcinogens/toxicity , Imidazoles/toxicity , Lung Neoplasms/epidemiology , Neoplasms, Experimental/epidemiology , Toxicity Tests, Chronic/statistics & numerical data , Animals , Carcinogens/administration & dosage , Data Interpretation, Statistical , Disease Progression , Dose-Response Relationship, Drug , Imidazoles/administration & dosage , Incidence , Lung/drug effects , Lung/pathology , Lung Neoplasms/chemically induced , Lung Neoplasms/pathology , Mice , Neoplasms, Experimental/chemically induced , Neoplasms, Experimental/pathology , Risk Assessment/methods , Risk Assessment/statistics & numerical data , Toxicity Tests, Chronic/methods
2.
BMC Public Health ; 21(1): 956, 2021 05 20.
Article in English | MEDLINE | ID: mdl-34016063

ABSTRACT

BACKGROUND: It is well-recognized that consumers face many challenges in understanding and applying nutritional guidance for low-calorie sweeteners (LCS). Thus, this research aims to (1) assess how benchmarks for safe levels of consumption of LCS are utilized by researchers, and (2) understand how varying use of such benchmarks may contribute to challenges in understanding and applying nutritional guidance for LCS consumption. METHODS: A systematic mapping exercise was employed to characterize when and how acceptable daily intake (ADI) values are used as health-based benchmarks in nutrition research studies that consider the safety of LCS. RESULTS: Based on results from charting 121 studies, our findings demonstrate that comparisons of LCS intake to an ADI derived by an authoritative body have been made in a diverse set of published literature, varying widely in their objectives, approaches, and populations of interest. The majority of studies compared the ADI to intake in a population under study; these represent the type of comparison that is most consistent with the intent of the ADI. Other applications of the ADI included use as a benchmark in experimental studies, risk-benefit analyses, and metabolism studies. CONCLUSION: Although most instances of ADI use were reasonable within the context of the individual studies' objectives, the diversity in use by original-study authors amplifies the continued need for development of "best practices" regarding the use and interpretation of the ADIs in current research. Using comparisons to the ADI can be a helpful way to provide context to research findings. However, in doing so, it is important that researchers utilize the value in a manner specific with its intent, as the ADI is a metric that represents an estimate of the amount of a substance that can be consumed daily over a lifetime without presenting an appreciable risk to health.


Subject(s)
Benchmarking , Sweetening Agents , Energy Intake , Humans , No-Observed-Adverse-Effect Level , Nutritional Status
3.
Sci Rep ; 11(1): 6403, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33737635

ABSTRACT

Drug-induced liver injury (DILI) causes one in three market withdrawals due to adverse drug reactions, causing preventable human suffering and massive financial loss. We applied evidence-based methods to investigate the role of preclinical studies in predicting human DILI using two anti-diabetic drugs from the same class, but with different toxicological profiles: troglitazone (withdrawn from US market due to DILI) and rosiglitazone (remains on US market). Evidence Stream 1: A systematic literature review of in vivo studies on rosiglitazone or troglitazone was conducted (PROSPERO registration CRD42018112353). Evidence Stream 2: in vitro data on troglitazone and rosiglitazone were retrieved from the US EPA ToxCast database. Evidence Stream 3: troglitazone- and rosiglitazone-related DILI cases were retrieved from WHO Vigibase. All three evidence stream analyses were conducted according to evidence-based methodologies and performed according to pre-registered protocols. Evidence Stream 1: 9288 references were identified, with 42 studies included in analysis. No reported biomarker for either drug indicated a strong hazard signal in either preclinical animal or human studies. All included studies had substantial limitations, resulting in "low" or "very low" certainty in findings. Evidence Stream 2: Troglitazone was active in twice as many in vitro assays (129) as rosiglitazone (60), indicating a strong signal for more off-target effects. Evidence Stream 3: We observed a fivefold difference in both all adverse events and liver-related adverse events reported, and an eightfold difference in fatalities for troglitazone, compared to rosiglitazone. In summary, published animal and human trials failed to predict troglitazone's potential to cause severe liver injury in a wider patient population, while in vitro data showed marked differences in the two drugs' off-target activities, offering a new paradigm for reducing drug attrition in late development and in the market. This investigation concludes that death and disability due to adverse drug reactions may be prevented if mechanistic information is deployed at early stages of drug development by pharmaceutical companies and is considered by regulators as a part of regulatory submissions.


Subject(s)
Chemical and Drug Induced Liver Injury/epidemiology , Diabetes Mellitus/drug therapy , Rosiglitazone/adverse effects , Troglitazone/adverse effects , Chemical and Drug Induced Liver Injury/pathology , Diabetes Mellitus/epidemiology , Drug-Related Side Effects and Adverse Reactions/epidemiology , Drug-Related Side Effects and Adverse Reactions/pathology , Humans , Hypoglycemic Agents , Liver/drug effects , Liver/pathology , Rosiglitazone/therapeutic use , Troglitazone/therapeutic use
4.
J Appl Toxicol ; 39(9): 1267-1282, 2019 09.
Article in English | MEDLINE | ID: mdl-31215065

ABSTRACT

Ammonium 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-propanoate, also known as GenX, is a processing aid used in the manufacture of fluoropolymers. GenX is one of several chemistries developed as an alternative to long-chain poly-fluoroalkyl substances, which tend to have long clearance half-lives and are environmentally persistent. Unlike poly-fluoroalkyl substances, GenX has more rapid clearance, but has been detected in US and international water sources. There are currently no federal drinking water standards for GenX in the USA; therefore, we developed a non-cancer oral reference dose (RfD) for GenX based on available repeated dose studies. The review of the available data indicate that GenX is unlikely to be genotoxic. A combination of traditional frequentist benchmark dose models and Bayesian benchmark dose models were used derive relevant points of departure from mammalian toxicity studies. In addition, deterministic and probabilistic RfD values were developed using available tools and regulatory guidance. The two approaches resulted in a narrow range of RfD values for liver lesions observed in a 2-year bioassay in rats (0.01-0.02 mg/kg/day). The probabilistic approach resulted in the lower, i.e., more conservative RfD. The probabilistic RfD of 0.01 mg/kg/day results in a maximum contaminant level goal of 70 ppb. It is anticipated that these values, along with the hazard identification and dose-response modeling described herein, should be informative for risk assessors and regulators interested in setting health-protective drinking water guideline values for GenX.


Subject(s)
Benchmarking , Drinking Water/standards , Hydrocarbons, Fluorinated/toxicity , No-Observed-Adverse-Effect Level , Propionates/toxicity , Reference Standards , Water Pollutants, Chemical/toxicity , Animals , Humans , Lethal Dose 50 , Models, Animal , Rats , United States
5.
J Appl Toxicol ; 38(3): 351-365, 2018 03.
Article in English | MEDLINE | ID: mdl-29064106

ABSTRACT

The current US Environmental Protection Agency (EPA) reference dose (RfD) for oral exposure to chromium, 0.003 mg kg-1  day-1 , is based on a no-observable-adverse-effect-level from a 1958 bioassay of rats exposed to ≤25 ppm hexavalent chromium [Cr(VI)] in drinking water. EPA characterizes the confidence in this RfD as "low." A more recent cancer bioassay indicates that Cr(VI) in drinking water is carcinogenic to mice at ≥30 ppm. To assess whether the existing RfD is health protective, neoplastic and non-neoplastic lesions from the 2 year cancer bioassay were modeled in a three-step process. First, a rodent physiological-based pharmacokinetic (PBPK) model was used to estimate internal dose metrics relevant to each lesion. Second, benchmark dose modeling was conducted on each lesion using the internal dose metrics. Third, a human PBPK model was used to estimate the daily mg kg-1 dose that would produce the same internal dose metric in both normal and susceptible humans. Mechanistic research into the mode of action for Cr(VI)-induced intestinal tumors in mice supports a threshold mechanism involving intestinal wounding and chronic regenerative hyperplasia. As such, an RfD was developed using incidence data for the precursor lesion diffuse epithelial hyperplasia. This RfD was compared to RfDs for other non-cancer endpoints; all RfD values ranged 0.003-0.02 mg kg-1  day-1 . The lowest of these values is identical to EPA's existing RfD value. Although the RfD value remains 0.003 mg kg-1  day-1 , the confidence is greatly improved due to the use of a 2-year bioassay, mechanistic data, PBPK models and benchmark dose modeling.


Subject(s)
Biological Assay , Carcinogenicity Tests/methods , Chromium/toxicity , Environmental Pollutants/toxicity , Intestinal Neoplasms/chemically induced , Models, Biological , Administration, Oral , Animals , Biological Assay/standards , Calibration , Carcinogenicity Tests/standards , Chromium/administration & dosage , Chromium/pharmacokinetics , Dose-Response Relationship, Drug , Environmental Pollutants/administration & dosage , Environmental Pollutants/pharmacokinetics , Female , Humans , Intestinal Neoplasms/pathology , Male , Mice , No-Observed-Adverse-Effect Level , Rats , Reference Standards , Risk Assessment , Species Specificity , United States , United States Environmental Protection Agency
6.
Transl Med UniSa ; 15: 22-33, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27896224

ABSTRACT

Farnesyltransferase inhibitors (FTIs) are a class of oral anti-cancer drugs currently tested in phase I-II clinical trials for treatment of hematological malignancies. The in vitro effects of various FTIs (alpha-hydroxyfarnesylphosphonic acid, manumycin-A and SCH66336) were tested on CD34+ KG1a cell line and in primary acute myeloid leukemia (AML) cells from 64 patients. By cell viability and clonogeneic methylcellulose assays, FTIs showed a significant inhibitory activity in CD34+ KG1a and primary bone marrow (BM) leukemic cells from 56% of AML patients. FTIs also induced activation of caspase-3 and Fas-independent apoptosis, confirmed by the finding that inhibition of caspase-8 was not associated with the rescue of FTI-treated cells. We concluded that other cellular events induced by FTIs may trigger activation of caspase-3 and subsequent apoptosis, but the expression of proapoptotic molecules, as Bcl-2 and Bcl-XL, and antiapoptotic, as Bcl-X(s), were not modified by FTIs. By contrast, expression of inducible nitric oxide synthase (iNOS) was increased in FTI-treated AML cells. Our results suggest a very complex mechanism of action of FTIs that require more studies for a better clinical use of the drugs alone or in combination in the treatment of hematological malignancies.

SELECTION OF CITATIONS
SEARCH DETAIL