Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Methods Mol Biol ; 1485: 85-99, 2017.
Article in English | MEDLINE | ID: mdl-27730550

ABSTRACT

Antibodies are critical reagents in many fundamental biochemical methods such as affinity chromatography, enzyme-linked immunosorbent assays (ELISA), flow cytometry, western blotting, immunoprecipitation, and immunohistochemistry techniques. As our understanding of the proteome becomes more complex, demand is rising for rapidly generated antibodies of higher specificity than ever before. It is therefore surprising that few investigators have moved beyond the classical methods of antibody production in their search for new reagents. Despite their long-standing efficacy, recombinant antibody generation technologies such as phage display are still largely the tools of biotechnology companies or research groups with a direct interest in protein engineering. In this chapter, we discuss the inherent limitations of classical polyclonal and monoclonal antibody generation and highlight an attractive alternative: generating high-specificity, high-affinity recombinant antibodies from alternative immune sources such as chickens, via phage display.


Subject(s)
Cell Surface Display Techniques , Animals , Antibodies , Antibody Affinity , Antibody Specificity , Chickens/immunology , Chromatography, Affinity , Recombinant Fusion Proteins , Single-Chain Antibodies
2.
MAbs ; 5(6): 882-95, 2013.
Article in English | MEDLINE | ID: mdl-23995618

ABSTRACT

While myriad molecular formats for bispecific antibodies have been examined to date, the simplest structures are often based on the scFv. Issues with stability and manufacturability in scFv-based bispecific molecules, however, have been a significant hindrance to their development, particularly for high-concentration, stable formulations that allow subcutaneous delivery. Our aim was to generate a tetravalent bispecific molecule targeting two inflammatory mediators for synergistic immune modulation. We focused on an scFv-Fc-scFv format, with a flexible (A4T)3 linker coupling an additional scFv to the C-terminus of an scFv-Fc. While one of the lead scFvs isolated directly from a naïve library was well-behaved and sufficiently potent, the parental anti-CXCL13 scFv 3B4 required optimization for affinity, stability, and cynomolgus ortholog cross-reactivity. To achieve this, we eschewed framework-based stabilizing mutations in favor of complementarity-determining region (CDR) mutagenesis and re-selection for simultaneous improvements in both affinity and thermal stability. Phage-displayed 3B4 CDR-mutant libraries were used in an aggressive "hammer-hug" selection strategy that incorporated thermal challenge, functional, and biophysical screening. This approach identified leads with improved stability and>18-fold, and 4,100-fold higher affinity for both human and cynomolgus CXCL13, respectively. Improvements were exclusively mediated through only 4 mutations in VL-CDR3. Lead scFvs were reformatted into scFv-Fc-scFvs and their biophysical properties ranked. Our final candidate could be formulated in a standard biopharmaceutical platform buffer at 100 mg/ml with<2% high molecular weight species present after 7 weeks at 4 °C and viscosity<15 cP. This workflow has facilitated the identification of a truly manufacturable scFv-based bispecific therapeutic suitable for subcutaneous administration.


Subject(s)
Antibodies, Bispecific/genetics , Complementarity Determining Regions/genetics , Protein Engineering , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/metabolism , Animals , Bacteriophages/genetics , Enzyme-Linked Immunosorbent Assay , Female , Humans , Injections, Subcutaneous , Peptide Library , Protein Stability , Rats , Single-Chain Antibodies/genetics , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL