Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters








Publication year range
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230116, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38705191

ABSTRACT

Many insects depend on high-altitude, migratory movements during part of their life cycle. The daily timing of these migratory movements is not random, e.g. many insect species show peak migratory flight activity at dawn, noon or dusk. These insects provide essential ecosystem services such as pollination but also contribute to crop damage. Quantifying the diel timing of their migratory flight and its geographical and seasonal variation, are hence key towards effective conservation and pest management. Vertical-looking radars provide continuous and automated measurements of insect migration, but large-scale application has not been possible because of limited availability of suitable devices. Here, we quantify patterns in diel flight periodicity of migratory insects between 50 and 500 m above ground level during March-October 2021 using a network of 17 vertical-looking radars across Europe. Independent of the overall daily migratory movements and location, peak migratory movements occur around noon, during crepuscular evening and occasionally the morning. Relative daily proportions of insect migration intensity and traffic during the diel phases of crepuscular-morning, day, crepuscular-evening and night remain largely equal throughout May-September and across Europe. These findings highlight, extend, and generalize previous regional-scale findings on diel migratory insect movement patterns to the whole of temperate Europe. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Subject(s)
Altitude , Animal Migration , Flight, Animal , Insecta , Animals , Flight, Animal/physiology , Europe , Insecta/physiology , Seasons
2.
Waste Manag ; 177: 13-23, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38281470

ABSTRACT

GENERAL CONTEXT: Gulls ingest plastic and other litter while foraging in open landfills, because organic matter is mixed with other debris. Therefore, gulls are potential biovectors of plastic pollution into natural habitats, especially when they concentrate in wetlands for roosting. NOVELTY: We quantified, for the first time, the flow of plastic and other anthropogenic debris from open landfills to a natural lake via the movement of gulls. We focused on Fuente de Piedra, an inland closed-basin lake in Spain that is internationally important for biodiversity. METHODOLOGY: In 2022, we sampled gull pellets regurgitated in the lake by lesser black-backed gulls Larus fuscus that feed on landfills, as well as their faeces, then characterized and quantified debris particles of ≥0.5 mm. By combining GPS and census data from 2010 to 2022, together with plastic quantification based on FTIR-ATR analysis, we estimated the average annual deposition of plastic and other debris by the wintering gull population into the lake. MAIN RESULTS: 86 % of pellets contained plastics, and 94 % contained other debris such as glass and textiles. Polyethylene (54 %), polypropylene (11.5 %) and polystyrene (11.5 %) were the main plastic polymers. An estimated annual mean of 400 kg of plastics were moved by gulls into the lake. Only 1 % of plastic mass was imported in faeces. DISCUSSION: Incorporating the biovectoring role of birds can provide a more holistic view of the plastic cycle and waste management. Biovectoring is predictable in sites worldwide where gulls and other waterbirds feed in landfills and roost in wetlands. We discuss bird deterrence and other ways of mitigating debris leakage into aquatic ecosystems.


Subject(s)
Charadriiformes , Animals , Ecosystem , Lakes , Polyethylene , Waste Disposal Facilities
3.
Mov Ecol ; 11(1): 66, 2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37865783

ABSTRACT

The risk posed by offshore wind farms to seabirds through collisions with turbine blades is greatly influenced by species-specific flight behaviour. Bird-borne telemetry devices may provide improved measurement of aspects of bird behaviour, notably individual and behaviour specific flight heights. However, use of data from devices that use the GPS or barometric altimeters in the gathering of flight height data is nevertheless constrained by a current lack of understanding of the error and calibration of these methods. Uncertainty remains regarding the degree to which errors associated with these methods can affect recorded flight heights, which may in turn have a significant influence on estimates of collision risk produced by Collision Risk Models (CRMs), which incorporate flight height distribution as an input. Using GPS/barometric altimeter tagged Lesser Black-backed Gulls Larus fuscus from two breeding colonies in the UK, we examine comparative flight heights produced by these devices, and their associated errors. We present a novel method of calibrating barometric altimeters using behaviour characterised from GPS data and open-source modelled atmospheric pressure. We examine the magnitude of difference between offshore flight heights produced from GPS and altimeters, comparing these measurements across sampling schedules, colonies, and years. We found flight heights produced from altimeter data to be significantly, although not consistently, higher than those produced from GPS data. This relationship was sustained across differing sampling schedules of five minutes and of 10 s, and between study colonies. We found the magnitude of difference between GPS and altimeter derived flight heights to also vary between individuals, potentially related to the robustness of calibration factors used. Collision estimates for theoretical wind farms were consequently significantly higher when using flight height distributions generated from barometric altimeters. Improving confidence in telemetry-obtained flight height distributions, which may then be applied to CRMs, requires sources of errors in these measurements to be identified. Our study improves knowledge of the calibration processes for flight height measurements based on telemetry data, with the aim of increasing confidence in their use in future assessments of collision risk and reducing the uncertainty over predicted mortality associated with wind farms.

4.
Glob Chang Biol ; 29(24): 6888-6899, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37795645

ABSTRACT

In response to climate warming, migratory animals can alter their migration so that different events in the annual cycle are better aligned in space and time with suitable environmental conditions. Although such responses have been studied extensively during spring migration and the breeding season, much less is known about the influence of temperature on movements throughout autumn migration and how those movements result in a winter range and shifts therein. We use multi-year GPS tracking data to quantify how daily autumn movement and annual winter distance from the breeding grounds are related to temperature in the Western Palearctic Bewick's swan, a long-lived migratory waterbird whose winter range has shifted more than 350 km closer to the breeding grounds since 1970 due to individuals increasingly 'short-stopping' their autumn migration. We show that the migratory movement of swans is driven by lower temperatures throughout the autumn season, with individuals during late autumn moving only substantially when temperatures drop below freezing. As a result, there is large flexibility in their annual winter distance as a response to winter temperature. On average, individuals overwinter 118 km closer to the breeding grounds per 1°C increase in mean December-January temperature. Given the observed temperature increase in the Bewick's swan winter range during the last decades, our results imply that the observed range shift is for a substantial part driven by individual responses to a warming climate. We thus present an example of individual flexibility towards climatic conditions driving the range shift of a migratory species. Our study adds to the understanding of the processes that shape autumn migration decisions, winter ranges and shifts therein, which is crucial to be able to predict how climate change may impact these processes in the future.


Subject(s)
Animal Migration , Anseriformes , Humans , Animals , Seasons , Animal Migration/physiology , Anseriformes/physiology , Temperature , Climate Change
5.
Proc Biol Sci ; 290(1997): 20222408, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37072044

ABSTRACT

Migrating animals show remarkable diversity in migration strategies, even between individuals from the same population. Migrating longer distances is usually expected to be costlier in terms of time, energy expenditure and risks with potential repercussions for subsequent stages within the annual cycle. Such costs are expected to be balanced by increased survival, for example due to higher quality wintering areas or lower energy expenditure at lower latitudes. We compared reproductive parameters and apparent survival of lesser black-backed gulls (Larus fuscus) breeding in The Netherlands, whose winter range extends from the UK to West Africa, resulting in one-way migration distances that differ by more than 4500 km. Individuals migrating furthest arrived later in the colony than shorter distance migrants, but still laid in synchrony with the colony and consequently had a shorter pre-laying period. This shorter pre-laying period affected neither egg volumes nor hatching success. We found no relationship between migration distance and apparent survival probability, corresponding with previous research showing that annual energy expenditure and distance travelled throughout the year is similar across migration strategies. Combined, our results indicate an equal fitness payoff across migration strategies, suggesting there is no strong selective pressure acting on migration strategy within this population.


Subject(s)
Animal Migration , Charadriiformes , Animals , Reproduction , Seasons , Netherlands
6.
Sci Rep ; 13(1): 1210, 2023 01 21.
Article in English | MEDLINE | ID: mdl-36681726

ABSTRACT

Seasonal migrations are used by diverse animal taxa, yet the costs and benefits of migrating have rarely been empirically examined. The aim of this study was to determine how migration influences two ecological currencies, energy expenditure and time allocated towards different behaviors, in a full annual cycle context. We compare these currencies among lesser black-backed gulls that range from short- (< 250 km) to long-distance (> 4500 km) migrants. Daily time-activity budgets were reconstructed from tri-axial acceleration and GPS, which, in conjunction with a bioenergetics model to estimate thermoregulatory costs, enabled us to estimate daily energy expenditure throughout the year. We found that migration strategy had no effect on annual energy expenditure, however, energy expenditure through time deviated more from the annual average as migration distance increased. Patterns in time-activity budgets were similar across strategies, suggesting migration strategy does not limit behavioral adjustments required for other annual cycle stages (breeding, molt, wintering). Variation among individuals using the same strategy was high, suggesting that daily behavioral decisions (e.g. foraging strategy) contribute more towards energy expenditure than an individual's migration strategy. These findings provide unprecedented new understanding regarding the relative importance of fine versus broad-scale behavioral strategies towards annual energy expenditures.


Subject(s)
Animal Migration , Charadriiformes , Animals , Seasons , Energy Metabolism , Molting
7.
Sci Total Environ ; 852: 157879, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-35944643

ABSTRACT

The energy exchange between the Earth's surface and atmosphere results in a highly dynamic habitat through which birds move. Thermal uplift is an atmospheric feature which many birds are able to exploit in order to save energy in flight, but which is governed by complex surface-atmosphere interactions. In mosaic landscapes consisting of multiple land uses, the spatial distribution of thermal uplift is expected to be heterogenous and birds may use the landscape selectively to maximise flight over areas where thermal soaring opportunities are best. Flight generalists such as the lesser black-backed gull, Larus fuscus, are expected to be less reliant on thermal uplift than obligate soaring birds. Nevertheless, gulls may select flight behaviours and routes in response to or in anticipation of thermal uplift in order to reduce their transport costs, even in landscapes where thermal uplift isn't prevalent. We explore thermal soaring over land in lesser black-backed gulls by using high-resolution GPS tracking to characterise individual instances of thermal soaring and detailed energy exchange modelling to map the thermal landscape which gulls experience. We determine that lesser black-backed gulls are regularly able to undertake thermal soaring, even in a wet temperate landscape below sea level. By examining the relationship between lesser black-backed gull flight, thermal uplift and land use, we determine that built up areas, particularly towns and cities, provide thermal uplift hotspots which lesser black-backed gulls preferentially make use of, resulting in more opportunities for energy saving flight through thermal soaring.


Subject(s)
Charadriiformes , Flight, Animal , Animals , Flight, Animal/physiology , Birds , Charadriiformes/physiology , Ecosystem , Cities
8.
Zookeys ; 1123: 31-45, 2022.
Article in English | MEDLINE | ID: mdl-36762038

ABSTRACT

We describe six datasets that contain GPS and accelerometer data of 202 Eurasian oystercatchers (Haematopusostralegus) spanning the period 2008-2021. Birds were equipped with GPS trackers in breeding and wintering areas in the Netherlands and Belgium. We used GPS trackers from the University of Amsterdam Bird Tracking System (UvA-BiTS) for several study purposes, including the study of space use during the breeding season, habitat use and foraging behaviour in the winter season, and impacts of human disturbance. To enable broader usage, all data have now been made open access. Combined, the datasets contain 6.0 million GPS positions, 164 million acceleration measurements and 7.0 million classified behaviour events (i.e., flying, walking, foraging, preening, and inactive). The datasets are deposited on the research repository Zenodo, but are also accessible on Movebank and as down-sampled occurrence datasets on the Global Biodiversity Information Facility (GBIF) and Ocean Biodiversity Information System (OBIS).

9.
Mov Ecol ; 9(1): 42, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34419142

ABSTRACT

BACKGROUND: Parental care benefits the offspring, but comes at a cost for each parent, which in biparental species gives rise to a conflict between partners regarding the within-pair distribution of care. Pair members could avoid exploitation by efficiently keeping track of each other's efforts and coordinating their efforts. Parents may, therefore, space their presence at the nest, which could also allow for permanent protection of the offspring. Additionally, they may respond to their partner's previous investment by co-adjusting their efforts on a trip-to-trip basis, resulting in overall similar parental activities within pairs. METHODS: We investigated the coordination of parental care measured as nest attendance and foraging effort in the Lesser black-backed gull (Larus fuscus), a species with long nest bouts that performs extended foraging trips out of sight of their partner. This was achieved by GPS-tracking both pair members simultaneously during the entire chick rearing period. RESULTS: We found that the timing of foraging trips (and hence nest attendance) was coordinated within gull pairs, as individuals left the colony only after their partner had returned. Parents did not match their partner's investment by actively co-adjusting their foraging efforts on a trip-by-trip basis. Yet, pair members were similar in their temporal and energetic investments during chick rearing. CONCLUSION: Balanced investment levels over a longer time frame suggest that a coordination of effort may not require permanent co-adjustment of the levels of care on a trip-to-trip basis, but may instead rather take place at an earlier stage in the reproductive attempt, or over integrated longer time intervals. Identifying the drivers and underlying processes of coordination will be one of the next necessary steps to fully understand parental cooperation in long-lived species.

11.
J Anim Ecol ; 90(5): 1058-1070, 2021 05.
Article in English | MEDLINE | ID: mdl-33496020

ABSTRACT

As environmental conditions fluctuate across years, seasonal migrants must determine where and when to move without comprehensive knowledge of conditions beyond their current location. Animals can address this challenge by following cues in their local environment to vary behaviour in response to current conditions, or by moving based on learned or inherited experience of past conditions resulting in fixed behaviour across years. It is often claimed that long-distance migrants are more fixed in their migratory behaviour because as distance between breeding and wintering areas increases, reliability of cues to predict distant and future conditions decreases. While supported by some population-level studies, the influence of migration distance on behavioural variation is seldom examined on an individual level. Lesser black-backed gulls Larus fuscus are generalist seabirds that use a diversity of migration strategies. Using high-resolution multi-year GPS tracking data from 82 individuals from eight colonies in Western Europe, we quantified inter- and intra-individual variation in non-breeding distributions, winter site fidelity, migration routes and timing of migration, with the objectives of determining how much variation lesser black-backed gulls have in their migratory behaviour and examining whether variation changes with migration distance. We found that intra-individual variation was significantly lower than variation between individuals for non-breeding distributions, winter site fidelity, migration routes and timing of migration, resulting in consistent individual strategies for all behaviours examined. Yet, intra-individual variation ranged widely among individuals (e.g. winter site overlap: 0-0.91 out of 1; migration timing: 0-192 days), and importantly, individual differences in variation were not related to migration distance. The apparent preference for maintaining a consistent strategy, present in even the shortest distance migrants, suggests that familiarity may be more advantageous than exactly tracking current environmental conditions. Yet, variation in behaviour across years was observed in many individuals and could be substantial. This suggests that individuals, irrespective of migration distance, have the capacity to adjust to current conditions within the broad confines of their individual strategies, and occasionally, even change their strategy.


Subject(s)
Animal Migration , Charadriiformes , Animals , Europe , Reproducibility of Results , Seasons
12.
Ibis (Lond 1859) ; 163(1): 274-282, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33343022

ABSTRACT

Numerous animals are able to adapt to temporal patterns in natural food availability, but whether species living in relatively novel environments such as cities can adapt to anthropogenic activity cycles is less well understood. We aimed to assess the extent to which urban gulls have adapted their foraging schedule to anthropogenic food source fluctuations related to human activity by combining field observations at three distinct urban feeding grounds (park, school and waste centre) with global positioning system (GPS) tracking data of gulls visiting similar types of feeding grounds throughout the same city. We found that the birds' foraging patterns closely matched the timing of school breaks and the opening and closing times of the waste centre, but gull activity in the park appeared to correspond to the availability of natural food sources. Overall, this suggests that gulls may have the behavioural flexibility to adapt their foraging behaviour to human time schedules when beneficial and that this trait could potentially enable them to thrive in cities.

13.
Mov Ecol ; 8(1): 45, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33292559

ABSTRACT

BACKGROUND: Habitat loss can force animals to relocate to new areas, where they would need to adjust to an unfamiliar resource landscape and find new breeding sites. Relocation may be costly and could compromise reproduction. METHODS: Here, we explored how the Lesser black-backed gull (Larus fuscus), a colonial breeding seabird species with a wide ecological niche, responds to the loss of its breeding habitat. We investigated how individuals adjusted their foraging behaviour after relocating to another colony due to breeding site destruction, and whether there were any reproductive consequences in the first years after relocation. To this end, we compared offspring growth between resident individuals and individuals that recently relocated to the same colony due to breeding habitat loss. Using GPS-tracking, we further investigated the foraging behaviour of resident individuals in both colonies, as well as that of relocated individuals, as enhanced foraging effort could represent a potential driver of reproductive costs. RESULTS: We found negative consequences of relocation for offspring development, which were apparent when brood demand was experimentally increased. Recently relocated gulls travelled further distances for foraging than residents, as they often visited more distant foraging sites used by residents breeding in their natal colony as well as new areas outside the home range of the residents in the colony where they settled. CONCLUSIONS: Our results imply that relocated individuals did not yet optimally adapt to the new food landscape, which was unexpected, given the social information on foraging locations that may have been available from resident neighbours in their new breeding colony. Even though the short-term reproductive costs were comparatively low, we show that generalist species, such as the Lesser black-backed gull, may be more vulnerable to habitat loss than expected. Long term studies are needed to investigate how long individuals are affected by their relocation in order to better assess potential population effects of (breeding) habitat loss.

14.
J Anim Ecol ; 89(11): 2631-2643, 2020 11.
Article in English | MEDLINE | ID: mdl-33439490

ABSTRACT

Large-scale environmental forces can influence biodiversity at different levels of biological organization. Climate, in particular, is often associated with species distributions and diversity gradients. However, its mechanistic link to population dynamics is still poorly understood. Here, we unravelled the full mechanistic path by which a climatic driver, the Atlantic trade winds, determines the viability of a bird population. We monitored the breeding population of Eleonora's falcons in the Canary Islands for over a decade (2007-2017) and integrated different methods and data to reconstruct how the availability of their prey (migratory birds) is regulated by trade winds. We tracked foraging movements of breeding adults using GPS, monitored departure of migratory birds using weather radar and simulated their migration trajectories using an individual-based, spatially explicit model. We demonstrate that regional easterly winds regulate the flux of migratory birds that is available to hunting falcons, determining food availability for their chicks and consequent breeding success. By reconstructing how migratory birds are pushed towards the Canary Islands by trade winds, we explain most of the variation (up to 86%) in annual productivity for over a decade. This study unequivocally illustrates how a climatic driver can influence local-scale demographic processes while providing novel evidence of wind as a major determinant of population fitness in a top predator.


Los factores ambientales a gran escala afectan a la biodiversidad a distintos niveles de organización. El clima en particular, a menudo se asocia a la distribución de especies y gradientes de diversidad. Sin embargo, los mecanismos que lo vinculan con la dinámica de poblaciones siguen siendo poco conocidos. En este estudio revelamos el mecanismo a través del cual un factor climático, los vientos Alisios atlánticos, determinan la viabilidad de una población de una especie de ave rapaz. Monitorizamos la población canaria de Halcón de Eleonor durante una década (2007­2017) e integramos distintos datos y métodos para reconstruir cómo la disponibilidad de alimento (pequeñas aves migratorias) es regulada por los vientos Alisios. Además, monitorizamos los movimientos de caza de adultos reproductores mediante GPS y el inicio de la migración de sus presas mediante un radar meteorológico, y simulamos la trayectoria de migración de estas presas utilizando un modelo espacialmente explícito basado en el individuo. Demostramos que los patrones de vientos del este regulan el flujo de aves migratorias que determina la disponibilidad de alimento para los halcones y sus pollos y, por tanto, su éxito reproductor. Al reconstruir cómo las aves migratorias son desviadas hasta las Islas Canarias por los vientos Alisios conseguimos explicar la mayor parte de la variación (hasta el 86%) en la productividad anual de los halcones durante una década. Este estudio ilustra cómo un fenómeno climático a gran escala puede afectar a los procesos demográficos a escala local y aporta nueva evidencia de que el viento puede ser un importante factor determinante de la eficacia biológica de un predador.


Subject(s)
Birds , Falconiformes , Animal Migration , Animals , Seasons , Spain , Weather , Wind
15.
J Anim Ecol ; 89(1): 237-247, 2020 01.
Article in English | MEDLINE | ID: mdl-31828775

ABSTRACT

GPS-tracking devices have been used in combination with a wide range of additional sensors to study animal behaviour, physiology and interaction with their environment. Tri-axial accelerometers allow researchers to remotely infer the behaviour of individuals, at all places and times. Collection of accelerometer data is relatively cheap in terms of energy usage, but the amount of raw data collected generally requires much storage space and is particularly demanding in terms of energy needed for data transmission. Here, we propose compressing the raw accelerometer (ACC) data into summary statistics within the tracking device (before transmission) to reduce data size, as a means to overcome limitations in storage and energy capacity. We explored this type of lossy data compression in the accelerometer data of tagged Bewick's swans Cygnus columbianus bewickii collected in spring 2017. Using software settings in which bouts of 2 s of both raw ACC data and summary statistics were collected in parallel but with different bout intervals to keep total data size comparable, we created the opportunity for a direct comparison of time budgets derived by the two data collection methods. We found that the data compression in our case yielded a six times reduction in data size per bout, and concurrent, similar decreases in storage and energy use of the device. We show that with the same accuracy of the behavioural classification, the freed memory and energy of the device can be used to increase the monitoring effort, resulting in a more detailed representation of the individuals' time budget. Rare and/or short behaviours, such as daily roost flights, were picked up significantly more when collecting summary statistics instead of raw ACC data (but note differences in sampling rate). Such level of detail can be of essential importance, for instance to make a reliable estimate of the energy budgets of individuals. In conclusion, we argue that this type of lossy data compression can be a well-considered choice in study situations where limitations in energy and storage space of the device pose a problem. Ultimately, these developments can allow for long-term and nearly continuous remote monitoring of the behaviour of free-ranging animals.


Subject(s)
Accelerometry , Behavior, Animal , Animals , Seasons
16.
J R Soc Interface ; 16(159): 20190486, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31594521

ABSTRACT

For studies of how birds control their altitude, seabirds are of particular interest because they forage offshore where the visual environment can be simply modelled by a flat world textured by waves then generating only ventral visual cues. This study suggests that optic flow, i.e. the rate at which the sea moves across the eye's retina, can explain gulls' altitude control over seas. In particular, a new flight model that includes both energy and optical invariants helps explain the gulls' trajectories during offshore takeoff and cruising flight. A linear mixed model applied to 352 flights from 16 individual lesser black backed gulls (Larus fuscus) revealed a statistically significant optic flow set-point of ca 25° s-1. Thereafter, an optic flow-based flight model was applied to 18 offshore takeoff flights from nine individual gulls. By introducing an upper limit in climb rate on the elevation dynamics, coupled with an optic flow set-point, the predicted altitude gives an optimized fit factor value of 63% on average (30-83% in range) with respect to the GPS data. We conclude that the optic flow regulation principle helps gulls to adjust their altitude over sea without having to directly measure their current altitude.


Subject(s)
Altitude , Charadriiformes/physiology , Flight, Animal/physiology , Models, Biological , Vision, Ocular , Animals , Oceans and Seas
17.
Sci Rep ; 9(1): 10527, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31324838

ABSTRACT

Increasing urbanisation is detrimental for some animal species and potentially advantageous for others. Urban-nesting populations of gulls have undergone rapid population increases worldwide, which has resulted in an increase in human-gull conflicts. In order to inform management and conservation decisions in relation to these populations, more information is needed about the behaviour of these birds in urban settings and how they utilise their environment. This study combined Global Positioning System (GPS) tracking data of 12 urban-nesting lesser black-backed gulls, Larus fuscus, with habitat and behaviour data over three breeding seasons (2016-2018). Despite the proximity of marine areas (~10 km), the birds only made significant use of terrestrial environments, spending two-thirds of their time away from the nest in suburban and urban areas, and one-third in rural green areas. The gulls utilised suburban and urban areas more as their chicks grew and appeared to use diverse foraging strategies to suit different habitats. These results indicate that the range of potential foraging areas available needs to be considered in management decisions and that urban bird populations may not use the resources they are expected to.


Subject(s)
Charadriiformes/physiology , Ecosystem , Animals , Appetitive Behavior , England , Female , Flight, Animal , Geographic Information Systems , Locomotion , Male , Nesting Behavior , Seasons , Urbanization
18.
Sci Rep ; 9(1): 9659, 2019 07 04.
Article in English | MEDLINE | ID: mdl-31273241

ABSTRACT

Interactions between landscape and atmosphere result in a dynamic flight habitat which birds may use opportunistically to save energy during flight. However, their ability to utilise these dynamic landscapes and its influence on shaping movement paths is not well understood. We investigate the degree to which gulls utilise fine scale orographic lift created by wind deflected upwards over landscape features in a virtually flat landscape. Using accelerometer measurements and GPS tracking, soaring flight is identified and analysed with respect to orographic lift, modelled using high-resolution digital elevation models and wind measurements. The relationship between orographic lift and flight routes suggests gulls have advanced knowledge of their aerial surroundings and the benefits to be gained from them, even regarding small features such as tree lines. We show that in a landscape constantly influenced by anthropogenic change, the structure of our landscape has an aerial impact on flight route connectivity and costs.

19.
PLoS One ; 14(6): e0217708, 2019.
Article in English | MEDLINE | ID: mdl-31194763

ABSTRACT

The importance of nest characteristics for birds breeding in the extreme climate conditions of polar regions, has been greatly understudied. Nest parameters, like nest orientation, exposure and insulation, could strongly influence microclimate and protection against precipitation of the nest, thereby affecting breeding success. A burrow nesting seabird, the Wilson's storm-petrel (Oceanites oceanicus) is an excellent model species to investigate the importance of nest characteristics, as it is the smallest endotherm breeding in the Antarctic. Here, we investigated the effects of nest parameters such as internal nest dimensions, nest micro-topography and thermal properties of the nest burrow and the influence of weather conditions on breeding output, measured as hatching success, chick survival, and chick growth. We collected data during the austral summers of 2017 and 2018, on King George Island, maritime Antarctica. Our results showed that the thermal microclimate of the nest burrow was significantly improved by a small entrance size, a low nest height, and insulation and tended to be enhanced by a low wind exposition index and an eastern nest site orientation. In addition, an eastern nest site orientation significantly reduced the chance of snow blocking. However, the relationships between nest characteristics and breeding output were complex and might be affected by other parameters like food availability and parental quality. The relation between chick growth and nest air temperature remained especially indistinct. Nevertheless, our results indicate that nest characteristics that enhance the thermal microclimate and reduce the risk of snow blocking favoured both hatching success and chick survival. Due to climate change in the Antarctic, snowfall is expected to increase in the future, which will likely enhance the importance of nest characteristics that determine snow blocking. Additionally, despite global warming, thermally favourable nest burrows will likely still be advantageous in the highly variable and challenging Antarctic climate.


Subject(s)
Birds/physiology , Breeding , Microclimate , Nesting Behavior , Animals , Antarctic Regions , Seasons , Snow
20.
Mov Ecol ; 7: 17, 2019.
Article in English | MEDLINE | ID: mdl-31149339

ABSTRACT

BACKGROUND: Several generalist species benefit from food provided by human activities. Food from anthropogenic sources is often high in caloric value and can positively influence reproductive success or survival. However, this type of resource may require specific foraging skills and habitat experience with related costs and benefits. As a result, not all individuals utilize these resources equally, with some individuals preferentially foraging in habitats where natural resources of lower energy content are predominant, possibly due to lower energy expenditure of the specific foraging strategy. METHODS: Here we investigate whether foraging in habitats which contain high caloric resources of anthropogenic origin is energetically costlier than foraging in habitats with low caloric resources such as intertidal areas or agricultural and natural areas, for example due to increased flight costs, in a generalist seabird, the herring gull Larus argentatus. We use data from GPS trackers with tri-axial acceleration measurements that allow us to quantify time-energy budgets, representing energy expenditure during foraging trips of herring gulls for each habitat. RESULTS: We show that the rate of energy expenditure is on average 34% higher when individuals forage for high caloric prey in marine and urban areas compared to foraging for low caloric prey in intertidal and agricultural areas. Energetic estimates suggest that if birds would feed completely on these resources, they have to gather ~ 400 kJ per day more to compensate for the higher foraging costs. CONCLUSIONS: Energy expenditure differs among foraging habitat and may thereby influence foraging decisions of individual herring gulls. As management of anthropogenic resources changes, so too may the costs and potential benefits of foraging strategies which are strongly tied to human activities.

SELECTION OF CITATIONS
SEARCH DETAIL