Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters








Publication year range
1.
Cell Rep ; 43(5): 114134, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38662542

ABSTRACT

Tumor MYCN amplification is seen in high-risk neuroblastoma, yet direct targeting of this oncogenic transcription factor has been challenging. Here, we take advantage of the dependence of MYCN-amplified neuroblastoma cells on increased protein synthesis to inhibit the activity of eukaryotic translation initiation factor 4A1 (eIF4A1) using an amidino-rocaglate, CMLD012824. Consistent with the role of this RNA helicase in resolving structural barriers in 5' untranslated regions (UTRs), CMLD012824 increased eIF4A1 affinity for polypurine-rich 5' UTRs, including that of the MYCN and associated transcripts with critical roles in cell proliferation. CMLD012824-mediated clamping of eIF4A1 spanned the full lengths of mRNAs, while translational inhibition was mediated through 5' UTR binding in a cap-dependent and -independent manner. Finally, CMLD012824 led to growth inhibition in MYCN-amplified neuroblastoma models without generalized toxicity. Our studies highlight the key role of eIF4A1 in MYCN-amplified neuroblastoma and demonstrate the therapeutic potential of disrupting its function.


Subject(s)
5' Untranslated Regions , Eukaryotic Initiation Factor-4A , N-Myc Proto-Oncogene Protein , Neuroblastoma , Animals , Humans , Mice , 5' Untranslated Regions/genetics , Cell Line, Tumor , Cell Proliferation , Eukaryotic Initiation Factor-4A/metabolism , Eukaryotic Initiation Factor-4A/genetics , N-Myc Proto-Oncogene Protein/metabolism , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/genetics , Neuroblastoma/pathology , Neuroblastoma/metabolism , Neuroblastoma/drug therapy , RNA, Messenger/metabolism , RNA, Messenger/genetics , Female , Mice, Inbred C57BL
2.
Nat Cancer ; 3(10): 1228-1246, 2022 10.
Article in English | MEDLINE | ID: mdl-36138189

ABSTRACT

Apart from the anti-GD2 antibody, immunotherapy for neuroblastoma has had limited success due to immune evasion mechanisms, coupled with an incomplete understanding of predictors of response. Here, from bulk and single-cell transcriptomic analyses, we identify a subset of neuroblastomas enriched for transcripts associated with immune activation and inhibition and show that these are predominantly characterized by gene expression signatures of the mesenchymal lineage state. By contrast, tumors expressing adrenergic lineage signatures are less immunogenic. The inherent presence or induction of the mesenchymal state through transcriptional reprogramming or therapy resistance is accompanied by innate and adaptive immune gene activation through epigenetic remodeling. Mesenchymal lineage cells promote T cell infiltration by secreting inflammatory cytokines, are efficiently targeted by cytotoxic T and natural killer cells and respond to immune checkpoint blockade. Together, we demonstrate that distinct immunogenic phenotypes define the divergent lineage states of neuroblastoma and highlight the immunogenic potential of the mesenchymal lineage.


Subject(s)
Adrenergic Agents , Neuroblastoma , Humans , Cell Lineage/genetics , Immune Checkpoint Inhibitors , Neuroblastoma/genetics , Cytokines/genetics , Phenotype
3.
Cell Rep ; 36(2): 109363, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34260934

ABSTRACT

Although activating mutations of the anaplastic lymphoma kinase (ALK) membrane receptor occur in ∼10% of neuroblastoma (NB) tumors, the role of the wild-type (WT) receptor, which is aberrantly expressed in most non-mutated cases, is unclear. Both WT and mutant proteins undergo extracellular domain (ECD) cleavage. Here, we map the cleavage site to Asn654-Leu655 and demonstrate that cleavage inhibition of WT ALK significantly impedes NB cell migration with subsequent prolongation of survival in mouse models. Cleavage inhibition results in the downregulation of an epithelial-to-mesenchymal transition (EMT) gene signature, with decreased nuclear localization and occupancy of ß-catenin at EMT gene promoters. We further show that cleavage is mediated by matrix metalloproteinase 9, whose genetic and pharmacologic inactivation inhibits cleavage and decreases NB cell migration. Together, our results indicate a pivotal role for WT ALK ECD cleavage in NB pathogenesis, which may be harnessed for therapeutic benefit.


Subject(s)
Anaplastic Lymphoma Kinase/chemistry , Anaplastic Lymphoma Kinase/metabolism , Cell Movement , Neuroblastoma/pathology , Amino Acid Sequence , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Anaplastic Lymphoma Kinase/genetics , Animals , Base Sequence , Cell Line, Tumor , Cell Membrane/metabolism , Disease Models, Animal , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Glycine/chemistry , HEK293 Cells , Humans , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred C57BL , Mutation/genetics , NIH 3T3 Cells , Neoplasm Invasiveness , Neuroblastoma/genetics , Protein Binding , Protein Domains
4.
Cell Stem Cell ; 26(4): 579-592.e6, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32142683

ABSTRACT

Neuroblastoma (NB), derived from the neural crest (NC), is the most common pediatric extracranial solid tumor. Here, we establish a platform that allows the study of human NBs in mouse-human NC chimeras. Chimeric mice were produced by injecting human NC cells carrying NB relevant oncogenes in utero into gastrulating mouse embryos. The mice developed tumors composed of a heterogenous cell population that resembled that seen in primary NBs of patients but were significantly different from homogeneous tumors formed in xenotransplantation models. The human tumors emerged in immunocompetent hosts and were extensively infiltrated by mouse cytotoxic T cells, reflecting a vigorous host anti-tumor immune response. However, the tumors blunted the immune response by inducing infiltration of regulatory T cells and expression of immune-suppressive molecules similar to escape mechanisms seen in human cancer patients. Thus, this experimental platform allows the study of human tumor initiation, progression, manifestation, and tumor-immune-system interactions in an animal model system.


Subject(s)
Neural Crest , Neuroblastoma , Animals , Child , Chimera , Disease Models, Animal , Humans , Mice
5.
Nature ; 572(7771): 676-680, 2019 08.
Article in English | MEDLINE | ID: mdl-31391581

ABSTRACT

The CCCTC-binding factor (CTCF), which anchors DNA loops that organize the genome into structural domains, has a central role in gene control by facilitating or constraining interactions between genes and their regulatory elements1,2. In cancer cells, the disruption of CTCF binding at specific loci by somatic mutation3,4 or DNA hypermethylation5 results in the loss of loop anchors and consequent activation of oncogenes. By contrast, the germ-cell-specific paralogue of CTCF, BORIS (brother of the regulator of imprinted sites, also known as CTCFL)6, is overexpressed in several cancers7-9, but its contributions to the malignant phenotype remain unclear. Here we show that aberrant upregulation of BORIS promotes chromatin interactions in ALK-mutated, MYCN-amplified neuroblastoma10 cells that develop resistance to ALK inhibition. These cells are reprogrammed to a distinct phenotypic state during the acquisition of resistance, a process defined by the initial loss of MYCN expression followed by subsequent overexpression of BORIS and a concomitant switch in cellular dependence from MYCN to BORIS. The resultant BORIS-regulated alterations in chromatin looping lead to the formation of super-enhancers that drive the ectopic expression of a subset of proneural transcription factors that ultimately define the resistance phenotype. These results identify a previously unrecognized role of BORIS-to promote regulatory chromatin interactions that support specific cancer phenotypes.


Subject(s)
Chromatin/genetics , Chromatin/metabolism , DNA-Binding Proteins/metabolism , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Neuroblastoma/drug therapy , Neuroblastoma/pathology , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Anaplastic Lymphoma Kinase/genetics , Animals , CCCTC-Binding Factor/metabolism , Cell Line, Tumor , DNA-Binding Proteins/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , HEK293 Cells , Humans , Mice , Molecular Targeted Therapy , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/enzymology , Neuroblastoma/genetics , Phenotype , Protein Binding
6.
Nat Commun ; 10(1): 1757, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30988284

ABSTRACT

Cyclin-dependent kinase 12 (CDK12) modulates transcription elongation by phosphorylating the carboxy-terminal domain of RNA polymerase II and selectively affects the expression of genes involved in the DNA damage response (DDR) and mRNA processing. Yet, the mechanisms underlying such selectivity remain unclear. Here we show that CDK12 inhibition in cancer cells lacking CDK12 mutations results in gene length-dependent elongation defects, inducing premature cleavage and polyadenylation (PCPA) and loss of expression of long (>45 kb) genes, a substantial proportion of which participate in the DDR. This early termination phenotype correlates with an increased number of intronic polyadenylation sites, a feature especially prominent among DDR genes. Phosphoproteomic analysis indicated that CDK12 directly phosphorylates pre-mRNA processing factors, including those regulating PCPA. These results support a model in which DDR genes are uniquely susceptible to CDK12 inhibition primarily due to their relatively longer lengths and lower ratios of U1 snRNP binding to intronic polyadenylation sites.


Subject(s)
Cyclin-Dependent Kinases/genetics , DNA Damage , DNA Repair/genetics , Cell Line, Tumor , Chromatography, High Pressure Liquid , Chromatography, Liquid , Humans , Models, Molecular , Phosphorylation , Polyadenylation , RNA Processing, Post-Transcriptional , Tandem Mass Spectrometry
7.
Cell Chem Biol ; 25(2): 135-142.e5, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29276047

ABSTRACT

Irreversible inhibition of transcriptional cyclin-dependent kinases (CDKs) provides a therapeutic strategy for cancers that rely on aberrant transcription; however, lack of understanding of resistance mechanisms to these agents will likely impede their clinical evolution. Here, we demonstrate upregulation of multidrug transporters ABCB1 and ABCG2 as a major mode of resistance to THZ1, a covalent inhibitor of CDKs 7, 12, and 13 in neuroblastoma and lung cancer. To counter this obstacle, we developed a CDK inhibitor, E9, that is not a substrate for ABC transporters, and by selecting for resistance, determined that it exerts its cytotoxic effects through covalent modification of cysteine 1039 of CDK12. These results highlight the importance of considering this common mode of resistance in the development of clinical analogs of THZ1, identify a covalent CDK12 inhibitor that is not susceptible to ABC transporter-mediated drug efflux, and demonstrate that target deconvolution can be accomplished through selection for resistance.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors , Neoplasm Proteins/antagonists & inhibitors , Phenylenediamines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Dose-Response Relationship, Drug , Humans , Molecular Structure , Neoplasm Proteins/metabolism , Phenylenediamines/chemistry , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemistry , Structure-Activity Relationship
8.
Sci Rep ; 7: 42888, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28220815

ABSTRACT

Cbx3/HP1γ is a histone reader whose function in the immune system is not completely understood. Here, we demonstrate that in CD8+ T cells, Cbx3/HP1γ insufficiency leads to chromatin remodeling accompanied by enhanced Prf1, Gzmb and Ifng expression. In tumors obtained from Cbx3/HP1γ-insufficient mice or wild type mice treated with Cbx3/HP1γ-insufficient CD8+ T cells, there is an increase of CD8+ effector T cells expressing the stimulatory receptor Klrk1/NKG2D, a decrease in CD4+ CD25+ FOXP3+ regulatory T cells (Treg cells) as well as CD25+ CD4+ T cells expressing the inhibitory receptor CTLA4. Together these changes in the tumor immune environment may have mitigated tumor burden in Cbx3/HP1γ-insufficient mice or wild type mice treated with Cbx3/HP1γ-insufficient CD8+ T cells. These findings suggest that targeting Cbx3/HP1γ can represent a rational therapeutic approach to control growth of solid tumors.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Chromosomal Proteins, Non-Histone/genetics , Animals , Apoptosis , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/transplantation , CTLA-4 Antigen/metabolism , Cell Line, Tumor , Chromosomal Proteins, Non-Histone/deficiency , Coculture Techniques , Core Binding Factor Alpha 3 Subunit/metabolism , Female , Histones/metabolism , Interferon-gamma/genetics , Interferon-gamma/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Neoplasms/pathology , Neoplasms/therapy , Perforin/genetics , Perforin/metabolism , RNA Polymerase II/metabolism , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
9.
Cell ; 159(5): 1126-1139, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25416950

ABSTRACT

The MYC oncoproteins are thought to stimulate tumor cell growth and proliferation through amplification of gene transcription, a mechanism that has thwarted most efforts to inhibit MYC function as potential cancer therapy. Using a covalent inhibitor of cyclin-dependent kinase 7 (CDK7) to disrupt the transcription of amplified MYCN in neuroblastoma cells, we demonstrate downregulation of the oncoprotein with consequent massive suppression of MYCN-driven global transcriptional amplification. This response translated to significant tumor regression in a mouse model of high-risk neuroblastoma, without the introduction of systemic toxicity. The striking treatment selectivity of MYCN-overexpressing cells correlated with preferential downregulation of super-enhancer-associated genes, including MYCN and other known oncogenic drivers in neuroblastoma. These results indicate that CDK7 inhibition, by selectively targeting the mechanisms that promote global transcriptional amplification in tumor cells, may be useful therapy for cancers that are driven by MYC family oncoproteins.


Subject(s)
Cyclin-Dependent Kinases/antagonists & inhibitors , Disease Models, Animal , Neuroblastoma/drug therapy , Nuclear Proteins/metabolism , Oncogene Proteins/metabolism , Phenylenediamines/therapeutic use , Protein Kinase Inhibitors/pharmacology , Pyrimidines/therapeutic use , Animals , Cell Cycle/drug effects , Cell Line, Tumor , Cyclin-Dependent Kinases/metabolism , Humans , N-Myc Proto-Oncogene Protein , Transcription, Genetic/drug effects , Cyclin-Dependent Kinase-Activating Kinase
10.
Patholog Res Int ; 2013: 243168, 2013.
Article in English | MEDLINE | ID: mdl-24167753

ABSTRACT

Objectives. To evaluate the role of angiogenesis tumor marker CD31 in the detection of precancerous and cancerous cervical lesions and to compare its efficacy with colposcopy and histopathology. Materials and Methods. 230 patients with a suspicious looking cervix and an abnormal Pap smear attending the Outpatient Department of Obstetrics and Gynaecology of GSVM Medical College were subjected to a colposcopic examination. 180 patients with suspected colposcopic findings were subjected to a colposcopic directed biopsy. Biopsy tissues were sent for histopathological examination out of which 50 biopsied samples were sent for immunostaining of CD-31. Statistical analysis was done. Results. Comparison of microvessel density (MVD) count by haematoxylin and eosin staining (HE) and immunostaining of CD31 in preinvasive group were 4.012 ± 2.57 and 5.44 ± 2.21, respectively, and in invasive group were 9.18 ± 2.32 and 12.82 ± 4.07, respectively, which showed that MVD was higher by CD31 both in preinvasive and invasive group, and it was statistically significant. Conclusion. Angiogenesis is a marker of tumor progression, and CD31 fixes up vessel better as compared to HE, so aggressiveness of the tumor can be better predicted by MVD-CD31 as compared to MVD-HE.

11.
Cancer Cell ; 22(1): 117-30, 2012 Jul 10.
Article in English | MEDLINE | ID: mdl-22789543

ABSTRACT

The ALK(F1174L) mutation is associated with intrinsic and acquired resistance to crizotinib and cosegregates with MYCN in neuroblastoma. In this study, we generated a mouse model overexpressing ALK(F1174L) in the neural crest. Compared to ALK(F1174L) and MYCN alone, co-expression of these two oncogenes led to the development of neuroblastomas with earlier onset, higher penetrance, and enhanced lethality. ALK(F1174L)/MYCN tumors exhibited increased MYCN dosage due to ALK(F1174L)-induced activation of the PI3K/AKT/mTOR and MAPK pathways, coupled with suppression of MYCN pro-apoptotic effects. Combined treatment with the ATP-competitive mTOR inhibitor Torin2 overcame the resistance of ALK(F1174L)/MYCN tumors to crizotinib. Our findings demonstrate a pathogenic role for ALK(F1174L) in neuroblastomas overexpressing MYCN and suggest a strategy for improving targeted therapy for ALK-positive neuroblastoma.


Subject(s)
Mutation , Neuroblastoma/genetics , Oncogenes , Proto-Oncogene Proteins/physiology , Receptor Protein-Tyrosine Kinases/genetics , Anaplastic Lymphoma Kinase , Animals , Disease Models, Animal , Mice , Mice, Transgenic , N-Myc Proto-Oncogene Protein , Neuroblastoma/pathology , Proto-Oncogene Proteins/genetics , RNA, Messenger/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL