Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
Add more filters








Publication year range
1.
Nano Converg ; 11(1): 14, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622355

ABSTRACT

Tunability of interfacial effects between two-dimensional (2D) crystals is crucial not only for understanding the intrinsic properties of each system, but also for designing electronic devices based on ultra-thin heterostructures. A prerequisite of such heterostructure engineering is the availability of 2D crystals with different degrees of interfacial interactions. In this work, we report a controlled epitaxial growth of monolayer TaSe2 with different structural phases, 1H and 1 T, on a bilayer graphene (BLG) substrate using molecular beam epitaxy, and its impact on the electronic properties of the heterostructures using angle-resolved photoemission spectroscopy. 1H-TaSe2 exhibits significant charge transfer and band hybridization at the interface, whereas 1 T-TaSe2 shows weak interactions with the substrate. The distinct interfacial interactions are attributed to the dual effects from the differences of the work functions as well as the relative interlayer distance between TaSe2 films and BLG substrate. The method demonstrated here provides a viable route towards interface engineering in a variety of transition-metal dichalcogenides that can be applied to future nano-devices with designed electronic properties.

2.
Adv Mater ; 36(24): e2312341, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38567889

ABSTRACT

Noncentrosymmetric transition metal dichalcogenide (TMD) monolayers offer a fertile platform for exploring unconventional Ising superconductivity (SC) and charge density waves (CDWs). However, the vulnerability of isolated monolayers to structural disorder and environmental oxidation often degrade their electronic coherence. Herein, an alternative approach is reported for fabricating stable and intrinsic monolayers of 1H-TaS2 sandwiched between SnS blocks in a (SnS)1.15TaS2 van der Waals (vdW) superlattice. The SnS block layers not only decouple individual 1H-TaS2 sublayers to endow them with monolayer-like electronic characteristics, but also protect the 1H-TaS2 layers from electronic degradation. The results reveal the characteristic 3 × 3 CDW order in 1H-TaS2 sublayers associated with electronic rearrangement in the low-lying sulfur p band, which uncovers a previously undiscovered CDW mechanism rather than the conventional Fermi surface-related framework. Additionally, the (SnS)1.15TaS2 superlattice exhibits a strongly enhanced Ising-like SC with a layer-independent Tc of ≈3.0 K, comparable to that of the isolated monolayer 1H-TaS2 sample, presumably attributed to their monolayer-like characteristics and retained Fermi states. These results provide new insights into the long-debated CDW order and enhanced SC of monolayer 1H-TaS2, establishing bulk vdW superlattices as promising platforms for investigating exotic collective quantum phases in the 2D limit.

3.
Rep Prog Phys ; 87(4)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38518359

ABSTRACT

Charge density wave (CDW is one of the most ubiquitous electronic orders in quantum materials. While the essential ingredients of CDW order have been extensively studied, a comprehensive microscopic understanding is yet to be reached. Recent research efforts on the CDW phenomena in two-dimensional (2D) materials provide a new pathway toward a deeper understanding of its complexity. This review provides an overview of the CDW orders in 2D with atomically thin transition metal dichalcogenides (TMDCs) as the materials platform. We mainly focus on the electronic structure investigations on the epitaxially grown TMDC samples with angle-resolved photoemission spectroscopy and scanning tunneling microscopy/spectroscopy as complementary experimental tools. We discuss the possible origins of the 2D CDW, novel quantum states coexisting with them, and exotic types of charge orders that can only be realized in the 2D limit.

4.
Proc Natl Acad Sci U S A ; 121(14): e2308247121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38551833

ABSTRACT

Diamond color centers have proven to be versatile quantum emitters and exquisite sensors of stress, temperature, electric and magnetic fields, and biochemical processes. Among color centers, the silicon-vacancy (SiV[Formula: see text]) defect exhibits high brightness, minimal phonon coupling, narrow optical linewidths, and high degrees of photon indistinguishability. Yet the creation of reliable and scalable SiV[Formula: see text]-based color centers has been hampered by heterogeneous emission, theorized to originate from surface imperfections, crystal lattice strain, defect symmetry, or other lattice impurities. Here, we advance high-resolution cryo-electron microscopy combined with cathodoluminescence spectroscopy and 4D scanning transmission electron microscopy (STEM) to elucidate the structural sources of heterogeneity in SiV[Formula: see text] emission from nanodiamond with sub-nanometer-scale resolution. Our diamond nanoparticles are grown directly on TEM membranes from molecular-level seedings, representing the natural formation conditions of color centers in diamond. We show that individual subcrystallites within a single nanodiamond exhibit distinct zero-phonon line (ZPL) energies and differences in brightness that can vary by 0.1 meV in energy and over 70% in brightness. These changes are correlated with the atomic-scale lattice structure. We find that ZPL blue-shifts result from tensile strain, while ZPL red shifts are due to compressive strain. We also find that distinct crystallites host distinct densities of SiV[Formula: see text] emitters and that grain boundaries impact SiV[Formula: see text] emission significantly. Finally, we interrogate nanodiamonds as small as 40 nm in diameter and show that these diamonds exhibit no spatial change to their ZPL energy. Our work provides a foundation for atomic-scale structure-emission correlation, e.g., of single atomic defects in a range of quantum and two-dimensional materials.

5.
Nat Mater ; 23(6): 775-781, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38182811

ABSTRACT

The discovery of superconductivity in infinite-layer nickelates established another category of unconventional superconductors that shares structural and electronic similarities with cuprates. However, key issues of the superconducting pairing symmetry, gap amplitude and superconducting fluctuations are yet to be addressed. Here we utilize static and ultrafast terahertz spectroscopy to address these. We demonstrate that the equilibrium terahertz conductivity and non-equilibrium terahertz responses of an optimally Sr-doped nickelate film (superconducting transition temperature of Tc = 17 K) are in line with the electrodynamics of d-wave superconductivity in the dirty limit. The gap-to-Tc ratio (2Δ/kBTc) is found to be 3.4, indicating that the superconductivity falls in the weak coupling regime. In addition, we observed substantial superconducting fluctuations near Tc that do not extend into the deep normal state as the optimally hole-doped cuprates do. Our results support a d-wave system that closely resembles the electron-doped cuprates.

6.
Sci Adv ; 9(47): eadi4661, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38000022

ABSTRACT

Metastable phases present a promising route to expand the functionality of complex materials. Of particular interest are light-induced metastable phases that are inaccessible under equilibrium conditions, as they often host new, emergent properties switchable on ultrafast timescales. However, the processes governing the trajectories to such hidden phases remain largely unexplored. Here, using time- and angle-resolved photoemission spectroscopy, we investigate the ultrafast dynamics of the formation of a hidden quantum state in the layered dichalcogenide 1T-TaS2 upon photoexcitation. Our results reveal the nonthermal character of the transition governed by a collective charge-density-wave excitation. Using a double-pulse excitation of the structural mode, we show vibrational coherent control of the phase-transition efficiency. Our demonstration of exceptional control, switching speed, and stability of the hidden state are key for device applications at the nexus of electronics and photonics.

7.
Nat Commun ; 14(1): 6679, 2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37865663

ABSTRACT

The flat electronic bands in magic-angle twisted bilayer graphene (MATBG) host a variety of correlated insulating ground states, many of which are predicted to support charged excitations with topologically non-trivial spin and/or valley skyrmion textures. However, it has remained challenging to experimentally address their ground state order and excitations, both because some of the proposed states do not couple directly to experimental probes, and because they are highly sensitive to spatial inhomogeneities in real samples. Here, using a scanning single-electron transistor, we observe thermodynamic gaps at even integer moiré filling factors at low magnetic fields. We find evidence of a field-tuned crossover from charged spin skyrmions to bare particle-like excitations, suggesting that the underlying ground state belongs to the manifold of strong-coupling insulators. From the spatial dependence of these states and the chemical potential variation within the flat bands, we infer a link between the stability of the correlated ground states and local twist angle and strain. Our work advances the microscopic understanding of the correlated insulators in MATBG and their unconventional excitations.

8.
Rev Sci Instrum ; 94(10)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37850856

ABSTRACT

Spin- and angle-resolved photoemission spectroscopy ("spin-ARPES") is a powerful technique for probing the spin degree-of-freedom in materials with nontrivial topology, magnetism, and strong correlations. Spin-ARPES faces severe experimental challenges compared to conventional ARPES attributed to the dramatically lower efficiency of its detection mechanism, making it crucial for instrumentation developments that improve the overall performance of the technique. In this paper, we demonstrate the functionality of our spin-ARPES setup based on time-of-flight spectroscopy and introduce our recent development of an electrostatic deflector mode to map out spin-resolved band structures without sample rotation. We demonstrate the functionality by presenting the spin-resolved spectra of the topological insulator Bi2Te3 and describe in detail the spectrum calibrations based on numerical simulations. By implementing the deflector mode, we minimize the need for sample rotation during measurements, hence improving the overall efficiency of experiments on small or inhomogeneous samples.

9.
Nat Commun ; 14(1): 5340, 2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37660171

ABSTRACT

The field of two-dimensional (2D) ferromagnetism has been proliferating over the past few years, with ongoing interests in basic science and potential applications in spintronic technology. However, a high-resolution spectroscopic study of the 2D ferromagnet is still lacking due to the small size and air sensitivity of the exfoliated nanoflakes. Here, we report a thickness-dependent ferromagnetism in epitaxially grown Cr2Te3 thin films and investigate the evolution of the underlying electronic structure by synergistic angle-resolved photoemission spectroscopy, scanning tunneling microscopy, x-ray absorption spectroscopy, and first-principle calculations. A conspicuous ferromagnetic transition from Stoner to Heisenberg-type is directly observed in the atomically thin limit, indicating that dimensionality is a powerful tuning knob to manipulate the novel properties of 2D magnetism. Monolayer Cr2Te3 retains robust ferromagnetism, but with a suppressed Curie temperature, due to the drastic drop in the density of states near the Fermi level. Our results establish atomically thin Cr2Te3 as an excellent platform to explore the dual nature of localized and itinerant ferromagnetism in 2D magnets.

10.
Nat Commun ; 14(1): 3129, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37253739

ABSTRACT

The appearance of certain spectral features in one-dimensional (1D) cuprate materials has been attributed to a strong, extended attractive coupling between electrons. Here, using time-dependent density matrix renormalization group methods on a Hubbard-extended Holstein model, we show that extended electron-phonon (e-ph) coupling presents an obvious choice to produce such an attractive interaction that reproduces the observed spectral features and doping dependence seen in angle-resolved photoemission experiments: diminished 3kF spectral weight, prominent spectral intensity of a holon-folding branch, and the correct holon band width. While extended e-ph coupling does not qualitatively alter the ground state of the 1D system compared to the Hubbard model, it quantitatively enhances the long-range superconducting correlations and suppresses spin correlations. Such an extended e-ph interaction may be an important missing ingredient in describing the physics of the structurally similar two-dimensional high-temperature superconducting layered cuprates, which may tip the balance between intertwined orders in favor of uniform d-wave superconductivity.

11.
Phys Rev Lett ; 130(12): 126902, 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37027861

ABSTRACT

Light-induced ferroelectricity in quantum paraelectrics is a new avenue of achieving dynamic stabilization of hidden orders in quantum materials. In this Letter, we explore the possibility of driving a transient ferroelectric phase in the quantum paraelectric KTaO_{3} via intense terahertz excitation of the soft mode. We observe a long-lived relaxation in the terahertz-driven second harmonic generation (SHG) signal that lasts up to 20 ps at 10 K, which may be attributed to light-induced ferroelectricity. Through analyzing the terahertz-induced coherent soft-mode oscillation and finding its hardening with fluence well described by a single-well potential, we demonstrate that intense terahertz pulses up to 500 kV/cm cannot drive a global ferroelectric phase in KTaO_{3}. Instead, we find the unusual long-lived relaxation of the SHG signal comes from a terahertz-driven moderate dipolar correlation between the defect-induced local polar structures. We discuss the impact of our findings on current investigations of the terahertz-induced ferroelectric phase in quantum paraelectrics.

12.
Nat Commun ; 14(1): 1116, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36849499

ABSTRACT

The excitonic insulator (EI) is a Bose-Einstein condensation (BEC) of excitons bound by electron-hole interaction in a solid, which could support high-temperature BEC transition. The material realization of EI has been challenged by the difficulty of distinguishing it from a conventional charge density wave (CDW) state. In the BEC limit, the preformed exciton gas phase is a hallmark to distinguish EI from conventional CDW, yet direct experimental evidence has been lacking. Here we report a distinct correlated phase beyond the 2×2 CDW ground state emerging in monolayer 1T-ZrTe2 and its investigation by angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM). The results show novel band- and energy-dependent folding behavior in a two-step process, which is the signatures of an exciton gas phase prior to its condensation into the final CDW state. Our findings provide a versatile two-dimensional platform that allows tuning of the excitonic effect.

13.
Proc Natl Acad Sci U S A ; 119(32): e2204630119, 2022 Aug 09.
Article in English | MEDLINE | ID: mdl-35914123

ABSTRACT

The effect of Lifshitz transition on thermodynamics and superconductivity in hole-doped cuprates has been heavily debated but remains an open question. In particular, an observed peak of electronic specific heat is proposed to originate from fluctuations of a putative quantum critical point p* (e.g., the termination of pseudogap at zero temperature), which is close to but distinguishable from the Lifshitz transition in overdoped La-based cuprates where the Fermi surface transforms from hole-like to electron-like. Here we report an in situ angle-resolved photoemission spectroscopy study of three-dimensional Fermi surfaces in La2-xSrxCuO4 thin films (x = 0.06 to 0.35). With accurate kz dispersion quantification, the said Lifshitz transition is determined to happen within a finite range around x = 0.21. Normal state electronic specific heat, calculated from spectroscopy-derived band parameters, reveals a doping-dependent profile with a maximum at x = 0.21 that agrees with previous thermodynamic microcalorimetry measurements. The account of the specific heat maximum by underlying band structures excludes the need for additionally dominant contribution from the quantum fluctuations at p*. A d-wave superconducting gap smoothly across the Lifshitz transition demonstrates the insensitivity of superconductivity to the dramatic density of states enhancement.

14.
Adv Mater ; 34(38): e2204579, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35902365

ABSTRACT

The spontaneous formation of electronic orders is a crucial element for understanding complex quantum states and engineering heterostructures in 2D materials. A novel 19 $\sqrt {19} $ × 19 $\sqrt {19} $ charge order in few-layer-thick 1T-TaTe2 transition metal dichalcogenide films grown by molecular beam epitaxy, which has not been realized, is report. The photoemission and scanning probe measurements demonstrate that monolayer 1T-TaTe2 exhibits a variety of metastable charge density wave orders, including the 19 $\sqrt {19} $ × 19 $\sqrt {19} $ superstructure, which can be selectively stabilized by controlling the post-growth annealing temperature. Moreover, it is found that only the 19 $\sqrt {19} $ × 19 $\sqrt {19} $ order persists in 1T-TaTe2 films thicker than a monolayer, up to 8 layers. The findings identify the previously unrealized novel electronic order in a much-studied transition metal dichalcogenide and provide a viable route to control it within the epitaxial growth process.

15.
Phys Rev Lett ; 128(3): 036401, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35119886

ABSTRACT

Hysteresis underlies a large number of phase transitions in solids, giving rise to exotic metastable states that are otherwise inaccessible. Here, we report an unconventional hysteretic transition in a quasi-2D material, EuTe_{4}. By combining transport, photoemission, diffraction, and x-ray absorption measurements, we observe that the hysteresis loop has a temperature width of more than 400 K, setting a record among crystalline solids. The transition has an origin distinct from known mechanisms, lying entirely within the incommensurate charge density wave (CDW) phase of EuTe_{4} with no change in the CDW modulation periodicity. We interpret the hysteresis as an unusual switching of the relative CDW phases in different layers, a phenomenon unique to quasi-2D compounds that is not present in either purely 2D or strongly coupled 3D systems. Our findings challenge the established theories on metastable states in density wave systems, pushing the boundary of understanding hysteretic transitions in a broken-symmetry state.

16.
Nat Commun ; 13(1): 906, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35173153

ABSTRACT

Monolayers of two-dimensional van der Waals materials exhibit novel electronic phases distinct from their bulk due to the symmetry breaking and reduced screening in the absence of the interlayer coupling. In this work, we combine angle-resolved photoemission spectroscopy and scanning tunneling microscopy/spectroscopy to demonstrate the emergence of a unique insulating 2 × 1 dimer ground state in monolayer 1T-IrTe2 that has a large band gap in contrast to the metallic bilayer-to-bulk forms of this material. First-principles calculations reveal that phonon and charge instabilities as well as local bond formation collectively enhance and stabilize a charge-ordered ground state. Our findings provide important insights into the subtle balance of interactions having similar energy scales that occurs in the absence of strong interlayer coupling, which offers new opportunities to engineer the properties of 2D monolayers.

17.
Nature ; 601(7894): 562-567, 2022 01.
Article in English | MEDLINE | ID: mdl-35082417

ABSTRACT

In conventional superconductors, the phase transition into a zero-resistance and perfectly diamagnetic state is accompanied by a jump in the specific heat and the opening of a spectral gap1. In the high-transition-temperature (high-Tc) cuprates, although the transport, magnetic and thermodynamic signatures of Tc have been known since the 1980s2, the spectroscopic singularity associated with the transition remains unknown. Here we resolve this long-standing puzzle with a high-precision angle-resolved photoemission spectroscopy (ARPES) study on overdoped (Bi,Pb)2Sr2CaCu2O8+δ (Bi2212). We first probe the momentum-resolved electronic specific heat via spectroscopy and reproduce the specific heat peak at Tc, completing the missing link for a holistic description of superconductivity. Then, by studying the full momentum, energy and temperature evolution of the spectra, we reveal that this thermodynamic anomaly arises from the singular growth of in-gap spectral intensity across Tc. Furthermore, we observe that the temperature evolution of in-gap intensity is highly anisotropic in the momentum space, and the gap itself obeys both the d-wave functional form and particle-hole symmetry. These findings support the scenario that the superconducting transition is driven by phase fluctuations. They also serve as an anchor point for understanding the Fermi arc and pseudogap phenomena in underdoped cuprates.

18.
Phys Rev Lett ; 127(19): 197003, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34797146

ABSTRACT

Establishing a minimal microscopic model for cuprates is a key step towards the elucidation of a high-T_{c} mechanism. By a quantitative comparison with a recent in situ angle-resolved photoemission spectroscopy measurement in doped 1D cuprate chains, our simulation identifies a crucial contribution from long-range electron-phonon coupling beyond standard Hubbard models. Using reasonable ranges of coupling strengths and phonon energies, we obtain a strong attractive interaction between neighboring electrons, whose strength is comparable to experimental observations. Nonlocal couplings play a significant role in the mediation of neighboring interactions. Considering the structural and chemical similarity between 1D and 2D cuprate materials, this minimal model with long-range electron-phonon coupling will provide important new insights on cuprate high-T_{c} superconductivity and related quantum phases.

19.
Science ; 373(6560): 1235-1239, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34516788

ABSTRACT

In the cuprates, one-dimensional (1D) chain compounds provide a distinctive opportunity to understand the microscopic physics, owing to the availability of reliable theories. However, progress has been limited by the challenge of controllably doping these materials. We report the synthesis and spectroscopic analysis of the 1D cuprate Ba2-xSrxCuO3+δ over a wide range of hole doping. Our angle-resolved photoemission experiments reveal the doping evolution of the holon and spinon branches. We identify a prominent folding branch whose intensity fails to match predictions of the simple Hubbard model. An additional strong near-neighbor attraction, which may arise from coupling to phonons, quantitatively explains experiments for all accessible doping levels. Considering structural and quantum chemistry similarities among cuprates, this attraction may play a similarly important role in high-temperature cuprate superconductors.

20.
Nano Lett ; 21(10): 4292-4298, 2021 May 26.
Article in English | MEDLINE | ID: mdl-33949872

ABSTRACT

Moiré superlattices (MSLs) formed in van der Waals materials have become a promising platform to realize novel two-dimensional electronic states. Angle-aligned trilayer structures can form two sets of MSLs which could potentially interfere. In this work, we directly image the moiré patterns in both monolayer and twisted bilayer graphene aligned on hexagonal boron nitride (hBN), using combined scanning microwave impedance microscopy and conductive atomic force microscopy. Correlation of the two techniques reveals the contrast mechanism for the achieved ultrahigh spatial resolution (<2 nm). We observe two sets of MSLs with different periodicities in the trilayer stack. The smaller MSL breaks the 6-fold rotational symmetry and exhibits abrupt discontinuities at the boundaries of the larger MSL. Using a rigid atomic-stacking model, we demonstrate that the hBN layer considerably modifies the MSL of twisted bilayer graphene. We further analyze its effect on the reciprocal space spectrum of the dual-moiré system.

SELECTION OF CITATIONS
SEARCH DETAIL