Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters








Publication year range
1.
Adv Mater ; 36(32): e2406007, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38847583

ABSTRACT

Natural plant leaves with multiple functions, for example, spectral features, transpiration, photosynthesis, etc., have played a significant role in the ecosystem, and artificial synthesis of plant leaves with multiple functions of natural ones is still a great challenge. Herein, this work presents an aerogel-involved living leaf (AL), most similar to natural ones so far, by embedding super-hydrophobic SiO2 aerogel microparticles in polyvinyl alcohol hydrogel in the presence of hygroscopic salt and chlorophyllin copper sodium to form solid-liquid-vapor triple-state gel. The AL shows a high spectral similarity with all sampled 15 species of natural leaves and exhibits ≈4-7 times transpiration speed higher than natural leaves. More importantly, AL can achieve several times higher photosynthesis than natural leaves without the energy provided by the respiratory action of natural ones. This work demonstrates the feasibility of creating ALs with natural leaf-like triple-state gel structures and multiple functions, opening up new avenues for energy conversion, environmental engineering, and biomimetic applications.


Subject(s)
Plant Leaves , Plant Leaves/chemistry , Plant Leaves/metabolism , Gels/chemistry , Silicon Dioxide/chemistry , Hydrogels/chemistry , Photosynthesis , Polyvinyl Alcohol/chemistry , Hydrophobic and Hydrophilic Interactions
2.
Small ; 20(25): e2310603, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38279621

ABSTRACT

To improve the sluggish kinetics of the hydrogen evolution reaction (HER), a key component in water-splitting applications, there is an urgent desire to develop efficient, cost-effective, and stable electrocatalysts. Strain engineering is proving an efficient strategy for increasing the catalytic activity of electrocatalysts. This work presents the development of Ru-Au bimetallic aerogels by a simple one-step in situ reduction-gelation approach, which exhibits strain effects and electron transfer to create a remarkable HER activity and stability in an alkaline environment. The surface strain induced by the bimetallic segregated structure shifts the d-band center downward, enhancing catalysis by balancing the processes of water dissociation, OH* adsorption, and H* adsorption. Specifically, the optimized catalyst shows low overpotentials of only 24.1 mV at a current density of 10 mA cm-2 in alkaline electrolytes, surpassing commercial Pt/C. This study can contribute to the understanding of strain engineering in bimetallic electrocatalysts for HER at the atomic scale.

3.
Science ; 382(6677): 1358-1359, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38127750

ABSTRACT

Encapsulated aerogel fibers offer thermal insulation, breathability, and strength.

4.
Nat Commun ; 14(1): 8450, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38114508

ABSTRACT

Aerogels, as famous lightweight and porous nanomaterials, have attracted considerable attention in various emerging fields in recent decades, however, both low density and weak mechanical performance make their configuration-editing capability challenging. Inspired by folk arts, herein we establish a highly efficient twice-coagulated (TC) strategy to fabricate configuration-editable tough aerogels enabled by transformable gel precursors. As a proof of concept, aramid nanofibers (ANFs) and polyvinyl alcohol (PVA) are selected as the main components of aerogel, among which PVA forms a flexible configuration-editing gel network in the first coagulation process, and ANF forms a configuration-locking gel network in the second coagulation process. TC strategy guarantees the resulting aerogels with both high toughness and feasible configuration editing capability individually or simultaneously. Altogether, the resulting tough aerogels with special configuration through soft to hard modulation provide great opportunities to break through the performance limits of the aerogels and expand application areas of aerogels.

5.
ACS Nano ; 17(18): 18411-18420, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37699578

ABSTRACT

Aerogel fibers, combining the nanoporous characteristics of aerogels with the slenderness of fibers, have emerged as a rising star in nanoscale materials science. However, endowing nanoporous aerogel fibers with good strength and high toughness remains elusive due to their high porosity and fragile mechanics. To address this challenge, this paper reports supertough aerogel fibers (SAFs) initially started from ionic-liquid-dissociated cellulose via wet-spinning and supercritical drying in sequence. The supertough nanoporous aerogel fibers assembled with cellulose nanofibers exhibit a high specific surface area (372 m2/g), good mechanical strength (30 MPa), and large elongation (107%). Benefiting from their high strength and elongation, the resultant cellulose nanoporous aerogel fibers show ultrahigh toughness up to 21.85 MJ/m3, much outperforming the known aerogel materials in the literature. Moreover, the toughness of this nanoporous aerogel fiber is 7.4 times higher than that of human knee ligaments, and its specific toughness is comparable to that of commonly used solid polyester fibers. In addition, we also verified the weavability, desirable thermal insulation performance, and supertoughness to resist the transient impact of SAFs. The long-sought strategy to simultaneously resolve the strength and toughness of nanoporous aerogel fibers, in combination with the biodegradable nature of the cellulose, provides multifaceted opportunities for broad potential applications, including lightweight wearable textiles and beyond.

6.
Small ; 19(41): e2302627, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37287342

ABSTRACT

The pursuit of efficient CO2 capture materials remains an unmet challenge. Especially, meeting both high sorption capacity and fast uptake kinetics is an ongoing effort in the development of CO2 sorbents. Here, a strategy to exploit liquid-in-aerogel porous composites (LIAPCs) that allow for highly effective CO2 capture and selective CO2 /N2 separation, is reported. Interestingly, the functional liquid tetraethylenepentamine (TEPA) is partially filled into the air pockets of SiO2 aerogel with left permanent porosity. Notably, the confined liquid thickness is 10.9-19.5 nm, which can be vividly probed by the atomic force microscope and rationalized by tailoring the liquid composition and amount. LIAPCs achieve high affinity between the functional liquid and solid porous counterpart, good structure integrity, and robust thermal stability. LIAPCs exhibit superb CO2 uptake capacity (5.44 mmol g-1 , 75 °C, and 15 vol% CO2 ), fast sorption kinetics, and high amine efficiency. Furthermore, LIAPCs ensure long-term adsorption-desorption cycle stability and offer exceptional CO2 /N2 selectivity both in dry and humid conditions, with a separation factor up to 1182.68 at a humidity of 1%. This approach offers the prospect of efficient CO2 capture and gas separation, shedding light on new possibilities to make the next-generation sorption materials for CO2 utilization.

7.
Adv Sci (Weinh) ; 10(9): e2205762, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36658735

ABSTRACT

Aerogel fibers garner tremendous scientific interest due to their unique properties such as ultrahigh porosity, large specific surface area, and ultralow thermal conductivity, enabling diverse potential applications in textile, environment, energy conversion and storage, and high-tech areas. Here, the fabrication methodologies to construct the aerogel fibers starting from nanoscale building blocks are overviewed, and the spinning thermodynamics and spinning kinetics associated with each technology are revealed. The huge pool of material choices that can be assembled into aerogel fibers is discussed. Furthermore, the fascinating properties of aerogel fibers, including mechanical, thermal, sorptive, optical, and fire-retardant properties are elaborated on. Next, the nano-confining functionalization strategy for aerogel fibers is particularly highlighted, touching upon the driving force for liquid encapsulation, solid-liquid interface adhesion, and interfacial stability. In addition, emerging applications in thermal management, smart wearable fabrics, water harvest, shielding, heat transfer devices, artificial muscles, and information storage, are discussed. Last, the existing challenges in the development of aerogel fibers are pointed out and light is shed on the opportunities in this burgeoning field.

8.
Mater Horiz ; 10(3): 899-907, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36541214

ABSTRACT

Control of gas transport through porous media is desired in multifarious processes such as chemical reactions, interface absorption, and medical treatment. Liquid gating technology, based on dynamically adaptive interfaces, has been developed in recent years and has shown excellent control capability in gas manipulation-the reversible opening and closing of a liquid gate for gas transport as the applied pressure changes. Here, we report a new strategy to achieve self-protective gas transport control by regulating the dynamic porous interface in a non-Newtonian fluid gating membrane based on the shear thickening fluid. The gas transport process can be suspended and restored via modulation of the acoustic field, owing to the transition of particle-to-particle interactions in a confined geometry. Our experimental and theoretical results support the stability and tunability of the gas transport control. In addition, relying on the shear thickening behaviour of the gating fluid, the transient response can be achieved to resist high-impact pressure. This strategy could be utilized to design integrated smart materials used in complex and extreme environments such as hazardous and explosive gas transportation.

9.
ACS Nano ; 16(9): 15237-15248, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36053080

ABSTRACT

Aerogel fibers, the simultaneous embodiment of aerogel porous network and fiber slender geometry, have shown critical advantages over natural and synthetic fibers in thermal insulation. However, how to control the building block orientation degree of the resulting aerogel fibers during the dynamic sol-gel transition process to expand their functions for emerging applications is a great challenge. Herein, nanoscale Kevlar liquid crystal (NKLC) aerogel fibers with different building block orientation degrees have been fabricated from Kevlar nanofibers via liquid crystal spinning, dynamic sol-gel transition, freeze-drying, and cold plasma hydrophobilization in sequence. The resulting NKLC aerogel fibers demonstrate extremely high mechanical strength (41.0 MPa), excellent thermal insulation (0.037 W·m-1·K-1), and self-cleaning performance (with a water contact angle of 154°). The superhydrophobic NKLC aerogel fibers can cyclically transform between aerogel and gel states, while gel fibers involving different building block orientation degrees display distinguishable brightness under polarized light. Based on these performances, digital textiles woven or embroidered with high- and low-orientated NKLC aerogel fibers enable up to 6.0 Gb information encryption in one square meter and on-demand decryption. Therefore, it can be envisioned that the tuning of the building blocks' orientation degree will be an appropriate strategy to endow performance to the liquid crystal aerogel fibers for potential applications beyond thermal insulation.

10.
Nature ; 610(7930): 74-80, 2022 10.
Article in English | MEDLINE | ID: mdl-36163287

ABSTRACT

The adverse impact of particulate air pollution on human health1,2 has prompted the development of purification systems that filter particulates out of air3-5. To maintain performance, the filter units must inevitably be replaced at some point, which requires maintenance, involves costs and generates solid waste6,7. Here we show that an ion-doped conjugated polymer-coated matrix infiltrated with a selected functional liquid enables efficient, continuous and maintenance-free air purification. As the air to be purified moves through the system in the form of bubbles, the functional fluid provides interfaces for filtration and for removal of particulate matter and pollutant molecules from air. Theoretical modelling and experimental results demonstrate that the system exhibits high efficiency and robustness: its one-time air purification efficiency can reach 99.6%, and its dust-holding capacity can reach 950 g m-2. The system is durable and resistant to fouling and corrosion, and the liquid acting as filter can be reused and adjusted to also enable removal of bacteria or odours. We anticipate that our purification approach will be useful for the development of specialist air purifiers that might prove useful in a settings such as hospitals, factories and mines.


Subject(s)
Absorption, Physicochemical , Air Pollutants , Filtration , Particulate Matter , Air Pollutants/chemistry , Air Pollutants/isolation & purification , Bacteria/isolation & purification , Dust/prevention & control , Filtration/instrumentation , Filtration/methods , Humans , Odorants/prevention & control , Particulate Matter/chemistry , Particulate Matter/isolation & purification , Polymers/chemistry , Solid Waste
11.
ACS Nano ; 16(6): 9378-9388, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35587451

ABSTRACT

Aerogel films with a low density are ideal candidates to meet lightweight application and have already been used in a myriad of fields; however, their structural design for performance enhancement remains elusive. Herein, we put forward a laminated structural engineering strategy to prepare a free-standing carbon nanotube (CNT)-based aerogel film with a densified laminated porous structure. By directional densification and carbonization, the three-dimensional network of one-dimensional nanostructures in the aramid nanofiber/carbon nanotube (ANF/CNT) hybrid aerogel film can be reconstructed to a laminated porous structure with preferential orientation and consecutively conductive pathways, resulting in a large specific surface area (341.9 m2/g) and high electrical conductivity (8540 S/m). Benefiting from the laminated porous structure and high electrical conductivity, the absolute specific shielding effectiveness (SSE/t) of a CNT-based aerogel film can reach 200647.9 dB cm2/g, which shows the highest value among the reported aerogel-based materials. The laminated CNT-based aerogel films with an adjustable wetting property also exhibit exceptional Joule heating performance. This work provides a structural engineering strategy for aerogel films with enhanced electric conductivity for lightweight applications, such as EMI shielding and wearable heating.

12.
Nat Commun ; 13(1): 1227, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35264594

ABSTRACT

Aerogel fibers have been recognized as the rising star in the fields of thermal insulation and wearable textiles. Yet, the lack of functionalization in aerogel fibers limits their applications. Herein, we report hygroscopic holey graphene aerogel fibers (LiCl@HGAFs) with integrated functionalities of highly efficient moisture capture, heat allocation, and microwave absorption. LiCl@HGAFs realize the water sorption capacity over 4.15 g g-1, due to the high surface area and high water uptake kinetics. Moreover, the sorbent can be regenerated through both photo-thermal and electro-thermal approaches. Along with the water sorption and desorption, LiCl@HGAFs experience an efficient heat transfer process, with a heat storage capacity of 6.93 kJ g-1. The coefficient of performance in the heating and cooling mode can reach 1.72 and 0.70, respectively. Notably, with the entrapped water, LiCl@HGAFs exhibit broad microwave absorption with a bandwidth of 9.69 GHz, good impedance matching, and a high attenuation constant of 585. In light of these findings, the multifunctional LiCl@HGAFs open an avenue for applications in water harvest, heat allocation, and microwave absorption. This strategy also suggests the possibility to functionalize aerogel fibers towards even broader applications.

13.
ACS Nano ; 16(3): 4905-4916, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35230080

ABSTRACT

Aerogels represent a kind of nanoporous solid with immense importance for a plethora of diverse applications. However, on-demand conformal shaping capacity remains extremely challenging due to the strength unfavorable during aerogel processing. Herein, a universal microgel-directed suspended printing (MSP) strategy is developed for fabricating various mesoporous aerogels with spatially stereoscopic structures on-demand. As a proof-of-concept demonstration, through the rational design of the used microgel matrix and favorable printing of the Kevlar nanofiber inks, the Kevlar aerogels with arbitrary spatial structure have been fabricated, demonstrating excellent printability and programmability under a high-speed printing mode (up to 167 mm s-1). Furthermore, the custom-tailored Kevlar aerogel insulator possessing superior thermal insulation attribute has ensured normal discharge capacity of the drone even under a harsh environment (-30 °C). Finally, various types of spatial 3D aerogel architectures, including organic (cellulose, alginate, chitosan), inorganic (graphene, MXene, silica), and inorganic-organic (graphene/cellulose, MXene/alginate, silica/chitosan) hybrid aerogels, have been successfully fabricated, suggesting the universality of the MSP strategy. The strategy reported here proposes an alternative for the development of various customized aerogels and stimulates the inspiration to truly arbitrary architectures for wider applications.

14.
Adv Mater ; 34(3): e2107327, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34762328

ABSTRACT

Liquid gating membranes have been demonstrated to show unprecedented properties of dynamicity, stability, adaptivity, and stimulus-responsiveness. Most recently, smart liquid gating membranes have attracted increasing attention to bring some brand-new properties for real-world applications, and various environment-driven systems have been created. Here, a self-driven system of a smart liquid gating membrane is further developed by designing a new sytem based on a liquid gating magnetoelastic porous membrane with reversible meniscus-shaped deformations, and it is not subject to the complex gating liquid restriction of magnetorheological fluids. Compared with other systems, this magnetic-responsive self-driven system has the advantage that it provides a universal and convenient way to realize active regulation of gas/liquid release. Experiments and theoretical calculations demonstrate the stability, the nonfouling behavior, and the tunability of the system. In addition, this system can be used to perfectly open and close gas transport, and the gating pressure threshold for the liquid release can be reduced under the same conditions. Based on the above capabilities, combined with the fast and 3D contactless operation, it will be of benefit in fields ranging from visible gas/liquid mixture content monitoring and energy-saving multiphase separation, remote fluid release, and beyond.

15.
Langmuir ; 37(45): 13501-13511, 2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34739232

ABSTRACT

Gels are soft functional materials with solid networks and open pores filled with solvents (for wet gels) or air (for aerogels), displaying broad applications in tissue engineering, catalysis, environmental remediation, energy storage, etc. However, currently known gels feature only a single (either solid-liquid or solid-vapor) interface, largely limiting their application territories. Therefore, it is both fundamentally intriguing and practically significant to develop conceptually new gel materials that possess solid-liquid-vapor multiple interfaces. Herein, we demonstrate a unique solid-liquid-vapor triphase gel, named as aerohydrogel, by gelling of a poly(vinyl alcohol) aqueous solution with glutaraldehyde in the presence of superhydrophobic silica aerogel microparticles. Owing to its continuous solid, liquid, and vapor phases, the resultant aerohydrogel simultaneously displays solid-liquid, solid-vapor, and liquid-vapor interfaces, leading to excellent properties including tunable density (down to 0.43 g·cm-3), considerable hydrophobicity, and excellent elasticity (compressive ratio of up to 80%). As a proof-of-concept application, the aerohydrogel exhibits a higher evaporative cooling efficiency than its hydrogel counterpart and a better cooling capability than the commercial phase change cooling film, respectively, showing promising performance in cooling various devices. Moreover, the resulting aerohydrogel could be facilely tailored with specific (e.g., magnetic) properties for emerging applications such as solar steam generation. This work extends biphase gel (hydrogel or aerogel) to solid-liquid-vapor triphase gel, as well as provides a promising strategy for designing more aerohydrogels serving as soft functional materials for applications in various emerging fields.

16.
Adv Mater ; 33(52): e2104851, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34623698

ABSTRACT

Composite materials can provide remarkable improvements over the individual constituents. Especially, with a liquid component introduced into a solid porous host, solid-liquid host-guest composites have recently come to the forefront with exceptional functions that promise them for a wealth of applications. Combining the unprecedented dynamic, transparent, omniphobic, self-healing, diffusive and adaptive nature of functional liquid with inherent solid host's property, solid-liquid host-guest composites can realize the ease of fabrication, long-term stability, and a broad spectrum of enhanced properties, which cannot be fully met by conventional solid-solid composites or liquid-liquid composites. This review presents the state-of-the-art progress in solid-liquid host-guest composites. Initially, the concept, classification, design strategy, as well as fabrication methods as a path forward to develop the composites are unraveled, and further it is elaborated on how the functionality of porous solid and functional liquid can be harnessed to create composites with a broad range of unique properties, especially, the optical, thermal, electric, mechanical, sorption, and separation properties. With these fascinating properties, a myriad of emerging applications such as optical devices, thermal management, electromagnetic-interference shielding, soft electronics, gas capture and release, and multiphase separations are touched upon, inspiring more frontier researches in materials science, interfacial chemistry, membrane science, engineering, and multidisciplinary. Finally, this review provides the perspective on the future directions of solid-liquid host-guest composites and assesses the challenges and opportunities ahead.

17.
Natl Sci Rev ; 8(5): nwaa301, 2021 May.
Article in English | MEDLINE | ID: mdl-34691643

ABSTRACT

Collective dynamics of confined colloids are crucial in diverse scenarios such as self-assembly and phase behavior in materials science, microrobot swarms for drug delivery and microfluidic control. Yet, fine-tuning the dynamics of colloids in microscale confined spaces is still a formidable task due to the complexity of the dynamics of colloidal suspension and to the lack of methodology to probe colloids in confinement. Here, we show that the collective dynamics of confined magnetic colloids can be finely tuned by external magnetic fields. In particular, the mechanical properties of the confined colloidal suspension can be probed in real time and this strategy can be also used to tune microscale fluid transport. Our experimental and theoretical investigations reveal that the collective configuration characterized by the colloidal entropy is controlled by the colloidal concentration, confining ratio and external field strength and direction. Indeed, our results show that mechanical properties of the colloidal suspension as well as the transport of the solvent in microfluidic devices can be controlled upon tuning the entropy of the colloidal suspension. Our approach opens new avenues for the design and application of drug delivery, microfluidic logic, dynamic fluid control, chemical reaction and beyond.

18.
Chem Soc Rev ; 49(22): 7907-7928, 2020 Nov 21.
Article in English | MEDLINE | ID: mdl-32705106

ABSTRACT

Porous membranes have a long history of research and applications, and their operations have been consolidated for a wide range of uses in the fields of chemical separation, water treatment, food production, catalysis, and energy storage and conversion. Regardless of their significance in the above areas, they still suffer from compromise that arise due to achieving a balance between the selectivity and permeability, fouling issues, and lack of adaptability to meet versatile and aggressive environments. Liquid-based porous membranes have come to the fore as a new alternative to avert these challenges with significant advantages in diffusive, dynamic, antifouling, omniphobic, self-healing, and adaptive properties. Although rapidly progressing, there is a still lack of a comprehensive review that specifically addresses these members of the membrane family, and more importantly, the confusions occurring among myriad liquid-based porous membranes that have impeded their applications in potential uses. With this goal, this tutorial review will give a new unifying view on the state-of-the-art progress of liquid-based porous membranes, including the historical timeline, interfacial behavior, materials design, materials chemistry, mass transport mechanism, fluid behavior, and emerging applications. Anatomizing the basic aspects such as chemical compatibility and mutual interplays between the porous matrix and the infused functional liquid, and the varied transport mechanisms, we hope to dissolve the complexities of liquid-based porous membranes for more audience. Emergent applications such as gas separation, extraction, smart gating systems, multiphase separation, and chemical detection are also touched upon, inspiring frontier researches in interfacial chemistry, material chemistry, fluid mechanics, membrane science, chemical engineering, etc.

19.
Soft Matter ; 16(24): 5650-5658, 2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32514509

ABSTRACT

The development of an emulsion is an important challenge in many fields, such as agrochemicals, pharmaceutics, paints, cosmetics, inkjet printing, and food science. However, the traditional strategies that refer to the empirical value and complex secondary additives cannot reflect the influence of the structure, content, compound, and adsorption of emulsifiers. Here, we propose a simple and effective strategy to develop the emulsion, wherein the emulsifiers are chosen based on the dilational rheological properties of the interfacial films at the molecular level. The dilational rheological properties of polyoxyethylene (80) castor oil (EL-80), sorbitan monostearate (Span 60), and their emulsions were explored by the oscillating drop method. Based on the dilational rheological properties, the emulsions were prepared by the phase inversion emulsification technique. The results showed that the emulsion was stable and realized effective solid-liquid interfacial interaction, which was attributed to the large dilational modulus (intermolecular interaction) at the oil/water interface and loss modulus (molecular diffusion exchange) at the air/water interface. These factors reduced the Ostwald ripening and coalescence, and finally increased the spreading diameter. Additionally, the prochloraz 25% emulsion in water (EW) and difenoconazole 20% EW were developed to verify the feasibility of the strategy. Therefore, this research advances the understanding of an emulsion by interfacial dilational rheological properties, which can provide a simple and effective strategy to develop a stable emulsion and achieve an effective solid-liquid interfacial interaction of the emulsion.

20.
ACS Nano ; 14(2): 2465-2474, 2020 02 25.
Article in English | MEDLINE | ID: mdl-31994870

ABSTRACT

The development of liquid gating membrane (LGM) systems with tunable multiphase selectivity and antifouling properties is limited by the mechanical stability of the membrane materials. The mechanical integrity of most polymeric membranes can be compromised by deformation under harsh operating conditions (elevated temperatures, corrosive environments, foulants, etc.), ultimately leading to their failure. Here, a facile electrochemical approach to the fabrication of multifunctional metal-based liquid gating membrane systems is presented. The membrane porosity, pore size, and membrane surface roughness can be tuned from micro- to nanometer scale, enabling function under a variety of operating conditions. The prepared LGMs demonstrate controllable gas-liquid selectivity, superior resistance to corrosive conditions and fouling chemicals, and significant reduction of the transmembrane pressure required for the separation process, resulting in lower energy consumption. The stability of the gating liquid is confirmed experimentally through sustained fouling resistance and further supported by the interfacial energy calculations. The mechanically robust metal-based membrane systems reported in this study significantly extend the operating range of LGMs, prompting their applications in water treatment processes such as wastewater treatment, degassing, and multiphase separation.

SELECTION OF CITATIONS
SEARCH DETAIL