Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters








Publication year range
1.
Nano Lett ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602471

ABSTRACT

Mimicking the function of human skin is highly desired for electronic skins (e-skins) to perceive the tactile stimuli by both their intensity and spatial location. The common strategy using pixelated pressure sensor arrays and display panels greatly increases the device complexity and compromises the portability of e-skins. Herein, we tackled this challenge by developing a user-interactive iontronic skin that simultaneously achieves electrical pressure sensing and on-site, nonpixelated pressure mapping visualization. By merging the electrochromic and iontronic pressure sensing units into an integrated multilayer device, the interlayer charge transfer is regulated by applied pressure, which induces both color shifting and a capacitance change. The iontronic skin could visualize the trajectory of dynamic forces and reveal both the intensity and spatial information on various human activities. The integration of dual-mode pressure responsivity, together with the scalable fabrication and explicit signal output, makes the iontronic skin highly promising in biosignal monitoring and human-machine interaction.

2.
Polymers (Basel) ; 16(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38257037

ABSTRACT

Carbon nanotubes (CNTs) and graphene have commonly been applied as the sensitive layer of strain sensors. However, the buckling deformation of CNTs and the crack generation of graphene usually leads to an unsatisfactory strain sensing performance. In this work, we developed a universal strategy to prepare welded CNT-graphene hybrids with tunable compositions and a tunable bonding strength between components by the in situ reduction of CNT-graphene oxide (GO) hybrid by thermal annealing. The stiffness of the hybrid film could be tailored by both initial CNT/GO dosage and annealing temperature, through which its electromechanical behaviors could also be defined. The strain sensor based on the CNT-graphene hybrid could be applied to collect epidermal bio-signals by both capturing the faint skin deformation from wrist pulse and recording the large deformations from joint bending, which has great potential in health monitoring, motion sensing and human-machine interfacing.

3.
Adv Healthc Mater ; 12(29): e2301838, 2023 11.
Article in English | MEDLINE | ID: mdl-37602671

ABSTRACT

Arteriosclerosis, which appears as a hardened and narrowed artery with plaque buildup, is the primary cause of various cardiovascular diseases such as stroke. Arteriosclerosis is often evaluated by clinically measuring the pulse wave velocity (PWV) using a two-point approach that requires bulky medical equipment and a skilled operator. Although wearable photoplethysmographic sensors for PWV monitoring are developed in recent years, likewise, this technique is often based on two-point measurement, and the signal can easily be interfered with by natural light. Herein, a single-point strategy is reported based on stable fingertip pulse monitoring using a flexible iontronic pressure sensor for heart-fingertip PWV (hfPWV) measurement. The iontronic sensor exhibits a high pressure-resolution on the order of 0.1 Pa over a wide linearity range, allowing the capture of characteristic peaks of fingertip pulse waves. The forward and reflected waves of the pulse are extracted and the time difference between the two waves is computed for hfPWV measurement using Hiroshi's method. Furthermore, a hfPWV-based model is established for arteriosclerosis evaluation with an accuracy comparable to that of existing clinical criteria, and the validity of the model is verified clinically. The work provides a reliable technique that can be used in wearable arteriosclerosis assessment systems.


Subject(s)
Arteriosclerosis , Cardiovascular Diseases , Wearable Electronic Devices , Humans , Pulse Wave Analysis , Arteriosclerosis/diagnosis , Monitoring, Physiologic
4.
ACS Nano ; 15(3): 5752-5761, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33683874

ABSTRACT

Interfacial solar evaporators (ISEs) for seawater desalination have garnered enormous attention in recent decades due to global water scarcity. Despite the progress in the energy conversion efficiency and production rate of ISE, the poor portability of large-area ISE during transportation as well as the clogging of water transport pathways by precipitated salts during operation remain grand challenges for its fielded applications. Here, we designed an ISE with high energy conversion efficiency and shape morphing capability by integrating carbon nanotube (CNT) fillers with a light-responsive shape memory polymer (SMP, cross-linked polycyclooctene (cPCO)). Utilizing the shape memory effect, our ISE can be folded to an origami with 1/9 of its original size to save space for transportation and allow for on-demand unfolding upon sunlight irradiation when deployed in service. In addition, the ISE is equipped with a real-time clogging monitoring function by measuring the capacitance of the electric double layer (EDL) formed at the evaporator/seawater nanointerface. Due to its good energy conversion efficiency, high portability, and clogging monitoring capability, we envisage our ISE as a promising selection in solar evaporation technologies.

5.
Adv Mater ; 32(5): e1901958, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31273850

ABSTRACT

The programmable nature of smart textiles makes them an indispensable part of an emerging new technology field. Smart textile-integrated microelectronic systems (STIMES), which combine microelectronics and technology such as artificial intelligence and augmented or virtual reality, have been intensively explored. A vast range of research activities have been reported. Many promising applications in healthcare, the internet of things (IoT), smart city management, robotics, etc., have been demonstrated around the world. A timely overview and comprehensive review of progress of this field in the last five years are provided. Several main aspects are covered: functional materials, major fabrication processes of smart textile components, functional devices, system architectures and heterogeneous integration, wearable applications in human and nonhuman-related areas, and the safety and security of STIMES. The major types of textile-integrated nonconventional functional devices are discussed in detail: sensors, actuators, displays, antennas, energy harvesters and their hybrids, batteries and supercapacitors, circuit boards, and memory devices.


Subject(s)
Biomedical Technology/instrumentation , Equipment Design/instrumentation , Textiles , Wearable Electronic Devices , Electric Conductivity , Electric Power Supplies , Fullerenes/chemistry , Humans , Metals/chemistry , Nanostructures/chemistry , Polymers/chemistry , Systems Integration
6.
Small ; 15(20): e1900582, 2019 05.
Article in English | MEDLINE | ID: mdl-30977967

ABSTRACT

Flexible electronics that can form tight interfaces with neural tissues hold great promise for improving the diagnosis and treatment of neurological disorders and advancing brain/machine interfaces. Here, the facile fabrication of a novel flexible micropillar electrode array (µPEA) is described based on a biotemplate method. The flexible and compliant µPEA can readily integrate with the soft surface of a rat cerebral cortex. Moreover, the recording sites of the µPEA consist of protruding micropillars with nanoscale surface roughness that ensure tight interfacing and efficient electrical coupling with the nervous system. As a result, the flexible µPEA allows for in vivo multichannel recordings of epileptiform activity with a high signal-to-noise ratio of 252 ± 35. The ease of preparation, high flexibility, and biocompatibility make the µPEA an attractive tool for in vivo spatiotemporal mapping of neural activity.


Subject(s)
Brain/physiology , Animals , Dura Mater/physiology , Electrochemistry , Microelectrodes , Pliability , Rats, Sprague-Dawley
7.
Adv Mater ; 31(45): e1804895, 2019 Nov.
Article in English | MEDLINE | ID: mdl-30300442

ABSTRACT

Implantable electrical probes that can record neural activities at single-neuron and sub-millisecond resolution are the most widely applied tools in both neuroscience research and neuroprosthetics. However, the structural and mechanical mismatch between conventional rigid probes and neural tissues results in inflammatory responses and signal degradation over chronic recordings. Reducing the cross-sectional footprints and rigidity of the probes can effectively improve the long-term stability of neural interfaces. Herein, recent progress in the development of implantable microelectrodes for chronically stable neural interfaces is highlighted, with a focus on the utilization of advanced materials and structural design concepts.

8.
ACS Appl Mater Interfaces ; 11(1): 1563-1570, 2019 Jan 09.
Article in English | MEDLINE | ID: mdl-30499288

ABSTRACT

Deterministic design of surface patterns has seen a surge of interests because of their wide applications in flexible and stretchable electronics, microfluidics, and optical devices. Recently, instability of bilayer systems has been extensively utilized by which micro-/nano-patterns of a film can be easily achieved through macroscopically deforming the underlying substrate. For a bilayer system with traditional thermostable substrates, the pattern morphology is only determined by initial strain mismatch of the two layers, and the realization of localized patterns appears to be particularly challenging because of the difficulties associated with manipulating inhomogeneous deformations. In this work, we exploit cross-linked polyethylene ( cPE), a shape memory polymer (SMP), as the flexible substrate for building micro-/nano-structures of sputtered gold films. We find that the shape memory effect can offer new dimensions for designing diverse and hierarchical surface structures by harnessing film thickness orheating time and by globally or locally controlling the thermal field. By combining those strategies, we further demonstrate versatile hierarchical, superimposed, and local surface patterns based on this cPE/gold (Au) system. Piezoresistive pressure sensors are assembled with the obtained patterned surface, which have high sensitivity, operational range, and cyclic stability. These results highlight the unique advantages of SMPs for building arbitrary surface patterns.

9.
Small ; 14(27): e1800819, 2018 07.
Article in English | MEDLINE | ID: mdl-29847706

ABSTRACT

Flexible piezoresistive pressure sensors have been attracting wide attention for applications in health monitoring and human-machine interfaces because of their simple device structure and easy-readout signals. For practical applications, flexible pressure sensors with both high sensitivity and wide linearity range are highly desirable. Herein, a simple and low-cost method for the fabrication of a flexible piezoresistive pressure sensor with a hierarchical structure over large areas is presented. The piezoresistive pressure sensor consists of arrays of microscale papillae with nanoscale roughness produced by replicating the lotus leaf's surface and spray-coating of graphene ink. Finite element analysis (FEA) shows that the hierarchical structure governs the deformation behavior and pressure distribution at the contact interface, leading to a quick and steady increase in contact area with loads. As a result, the piezoresistive pressure sensor demonstrates a high sensitivity of 1.2 kPa-1 and a wide linearity range from 0 to 25 kPa. The flexible pressure sensor is applied for sensitive monitoring of small vibrations, including wrist pulse and acoustic waves. Moreover, a piezoresistive pressure sensor array is fabricated for mapping the spatial distribution of pressure. These results highlight the potential applications of the flexible piezoresistive pressure sensor for health monitoring and electronic skin.

10.
Biosens Bioelectron ; 105: 109-115, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29358111

ABSTRACT

Subdural surface and penetrating depth probes are widely applied to record neural activities from the cortical surface and intracortical locations of the brain, respectively. Simultaneous surface and depth neural activity recording is essential to understand the linkage between the two modalities. Here, we develop flexible dual-modality neural probes based on graphene transistors. The neural probes exhibit stable electrical performance even under 90° bending because of the excellent mechanical properties of graphene, and thus allow multi-site recording from the subdural surface of rat cortex. In addition, finite element analysis was carried out to investigate the mechanical interactions between probe and cortex tissue during intracortical implantation. Based on the simulation results, a sharp tip angle of π/6 was chosen to facilitate tissue penetration of the neural probes. Accordingly, the graphene transistor-based dual-modality neural probes have been successfully applied for simultaneous surface and depth recording of epileptiform activity of rat brain in vivo. Our results show that graphene transistor-based dual-modality neural probes can serve as a facile and versatile tool to study tempo-spatial patterns of neural activities.


Subject(s)
Biosensing Techniques/instrumentation , Brain/physiology , Graphite/chemistry , Neurons/physiology , Transistors, Electronic , Animals , Brain/cytology , Brain/physiopathology , Electrodes, Implanted , Epilepsy/diagnosis , Epilepsy/physiopathology , Equipment Design , Finite Element Analysis , Neurons/pathology , Rats, Sprague-Dawley
11.
Sci Rep ; 6: 32989, 2016 09 09.
Article in English | MEDLINE | ID: mdl-27608928

ABSTRACT

In this study, we report the polymer-based graphene foams through combination of bottom-up assembly and simple triaxially buckled structure design. The resulting polymer-based graphene foams not only effectively transfer the functional properties of graphene, but also exhibit novel negative Poisson's ratio (NPR) behaviors due to the presence of buckled structure. Our results show that after the introduction of buckled structure, improvement in stretchability, toughness, flexibility, energy absorbing ability, hydrophobicity, conductivity, piezoresistive sensitivity and crack resistance could be achieved simultaneously. The combination of mechanical properties, multifunctional performance and unusual deformation behavior would lead to the use of our polymer-based graphene foams for a variety of novel applications in future such as stretchable capacitors or conductors, sensors and oil/water separators and so on.

12.
ACS Nano ; 9(11): 10867-75, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26468735

ABSTRACT

Nanomaterials serve as promising candidates for strain sensing due to unique electromechanical properties by appropriately assembling and tailoring their configurations. Through the crisscross interlacing of graphene microribbons in an over-and-under fashion, the obtained graphene woven fabric (GWF) indicates a good trade-off between sensitivity and stretchability compared with those in previous studies. In this work, the function of woven fabrics for highly sensitive strain sensing is investigated, although network configuration is always a strategy to retain resistance stability. The experimental and simulation results indicate that the ultrahigh mechanosensitivity with gauge factors of 500 under 2% strain is attributed to the macro-woven-fabric geometrical conformation of graphene, which induces a large interfacial resistance between the interlaced ribbons and the formation of microscale-controllable, locally oriented zigzag cracks near the crossover location, both of which have a synergistic effect on improving sensitivity. Meanwhile, the stretchability of the GWF could be tailored to as high as over 40% strain by adjusting graphene growth parameters and adopting oblique angle direction stretching simultaneously. We also demonstrate that sensors based on GWFs are applicable to human motion detection, sound signal acquisition, and spatially resolved monitoring of external stress distribution.


Subject(s)
Electronics/methods , Graphite/chemistry , Nanotechnology/methods , Skin/metabolism , Textiles , Touch , Adhesiveness , Humans , Polymers/chemistry
13.
Mar Pollut Bull ; 90(1-2): 299-303, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25440896

ABSTRACT

The exotic emission of ballast water has threatened the coastal ecological environment and people's health in many countries. This paper firstly introduces pulse intense light to treat ballast water. 99.9 ± 0.09% inactivation of Heterosigma akashiwo and 99.9 ± 0.16% inactivation of Pyramimonas sp. are observed under treatment conditions of 350 V pulse peak voltage, 15 Hz pulse frequency, 5 ms pulse width and 1.78 L/min flow rate. The energy consumption of the self-designed pulse intense light treatment system is about 2.90-5.14 times higher than that of the typical commercial UV ballast water treatment system. The results indicate that pulse intense light is an effective technique for ballast water treatment, while it is only a competitive one when drastic decreasing in energy consumption is accomplished.


Subject(s)
Light , Microalgae/radiation effects , Ships , Water Purification/methods , Humans , Introduced Species , Sterilization/methods , Water
SELECTION OF CITATIONS
SEARCH DETAIL