Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 410
Filter
1.
Biol Psychiatry ; 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39389408

ABSTRACT

BACKGROUND: We previously reported that a single injection of (R,S)-ketamine or its metabolite (2S,6S)-hydroxynorketamine (HNK) prior to stress attenuates learned fear. However, whether these drugs attenuate learned fear through divergent or convergent effects on neural activity remains to be determined. METHODS: 129S6/SvEv male mice were injected with saline, (R,S)-ketamine, or (2S,6S)-HNK one week before a 3-shock contextual fear conditioning (CFC) paradigm. Five days later, mice were re-exposed to the aversive context, and euthanized one hour later to quantify active cells. Brains were processed for c-fos immunoreactivity, and neural networks were built with a novel, wide-scale imaging pipeline. RESULTS: We found that (R,S)-ketamine and (2S,6S)-HNK attenuate learned fear. Fear-related neural activity was altered in: dorsal CA3 following (2S,6S)-HNK; ventral CA3 and CA1, infralimbic (IL) and prelimbic (PL) regions, insular cortex (IC), retrosplenial cortex (RSP), piriform cortex (PIR), nucleus reuniens (RE), and periaqueductal grey (PAG) following both (R,S)-ketamine and (2S,6S)-HNK; and in the paraventricular nucleus of thalamus (PVT) following (R,S)-ketamine. Dorsal CA3 and ventral hippocampus activation correlated with freezing in the (R,S)-ketamine group, and RSP activation correlated with freezing in both (R,S)-ketamine and (2S,6S)-HNK groups. (R,S)-ketamine increased connectivity between cortical and subcortical regions while (2S,6S)-HNK increased connectivity within these regions. CONCLUSIONS: This work identifies novel nodes in fear networks, involving the RE, PIR, IC, PAG and RSP, that can be targeted with neuromodulatory strategies or pharmaceutical compounds to treat fear-induced disorders. This approach could be used to optimize target engagement and dosing strategies of existing medications.

2.
Nat Commun ; 15(1): 8612, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39366965

ABSTRACT

Venous thrombosis (VT) is a common vascular disease associated with reduced survival and a high recurrence rate. VT is initiated by the accumulation of platelets and neutrophils at sites of endothelial cell activation. A role for platelet αIIbß3 in VT is not established, a task complicated by the increased bleeding risk caused by partial agonists such as tirofiban. Here, we show that m-tirofiban, a modified version of tirofiban, does not agonize αIIbß3 based on lack of neoepitope expression and the cryo-EM structure of m-tirofiban/full-length αIIbß3 complex. m-tirofiban abolishes agonist-induced platelet aggregation while preserving clot retraction ex vivo and, unlike tirofiban, it suppresses venous thrombogenesis in a mouse model without increasing bleeding. These findings establish a key role for αIIbß3 in VT initiation and suggest that m-tirofiban and compounds with a similar structurally-defined mechanism of action merit consideration as potential thromboprophylaxis agents in patients at high risk for VT and hemorrhage.


Subject(s)
Blood Platelets , Disease Models, Animal , Platelet Aggregation , Platelet Glycoprotein GPIIb-IIIa Complex , Tirofiban , Venous Thrombosis , Animals , Female , Humans , Male , Mice , Blood Platelets/metabolism , Blood Platelets/drug effects , Clot Retraction , Cryoelectron Microscopy , Hemorrhage , Mice, Inbred C57BL , Platelet Aggregation/drug effects , Platelet Aggregation Inhibitors/pharmacology , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Tirofiban/pharmacology , Venous Thrombosis/metabolism , Venous Thrombosis/prevention & control
3.
J Hazard Mater ; 480: 136167, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39413522

ABSTRACT

Plastic pollution in wetlands has recently emerged as an urgent environmental problem. However, the impacts of plastic contamination on soil-plant properties and greenhouse gas (GHG) emissions in wetlands remain unclear. Thus, this study conducted a meta-analysis based on 44 study sites to explore the influence of plastic pollution on soil physicochemical variables, soil microorganisms, enzyme activity, functional genes, plant characteristics, and GHG emissions (CO2, CH4, and N2O) in different wetland types. Based on the collected dataset, the plastic pollution significantly increased soil organic matter and organic carbon by on average 28.9 % and 34.2 %, respectively, while decreased inorganic nutrient elements, bacteria alpha diversity and enzyme activities by an average of 5.9 -14.2 %. The response of bacterial abundance to plastic pollution varied depending on phylum classes. Plant biomass and photosynthetic efficiency were decreased by an average of 12.8 % and 18.4 % due to plastic pollution. The concentration and exposure time of plastics play a key role in influencing the soil and plant properties in wetlands. Furthermore, plastic exposure notably increased the abundance of the functional genes related to C degradation and the ammonia oxidizing microorganisms, and the consequent CO2 and N2O emissions (with effect sizes of 2.10 and 1.94, respectively). We also found that plastic concentrations and exposure duration affected the wetland soil-plant system. Our results might be helpful to design further investigations on plastic effects and develop appropriate measures for mitigating plastic pollution in wetlands.

4.
BMC Genomics ; 25(1): 970, 2024 Oct 16.
Article in English | MEDLINE | ID: mdl-39415108

ABSTRACT

BACKGROUND: Structural variations (SVs) are widespread across genome and have a great impact on evolution, disease, and phenotypic diversity. Despite the development of numerous bioinformatic tools, commonly referred to as SV callers, tailored for detecting SVs using whole genome sequence (WGS) data and employing diverse algorithms, their performance necessitates rigorous evaluation with real data and validated SVs. Moreover, a considerable proportion of these tools have been primarily designed and optimized using human genome data. Consequently, their applicability and performance in Avian species, characterized by smaller genomes and distinct genomic architectures, remain inadequately assessed. RESULTS: We performed a comprehensive assessment of the performance of ten widely used SV callers using population-level real genomic data with the validated five common types of SVs. The performance of SV callers varies with the types and sizes of SVs. As compared with other tools, GRIDSS, Lumpy, Wham, and Manta present better detection accuracy. Pindel can detect more small SVs than others. CNVnator and CNVkit can detect more medium and large copy number variations. Given the poor consistency among different SV callers, the combination calling strategy is not recommended. All tools show poor ability in the detection of insertions (especially with size > 150 bp). At least 50× read depth is required to detect more than 80% of the SVs for most tools. CONCLUSIONS: This study highlights the importance and necessity of using real sequencing data, rather than simulated data only, with validated SVs for SV caller evaluation. Some practical guidance and suggestions are provided for SV detection in future researches.


Subject(s)
Chickens , Whole Genome Sequencing , Animals , Chickens/genetics , Whole Genome Sequencing/methods , Genomics/methods , Algorithms , Genomic Structural Variation , Software , DNA Copy Number Variations , Computational Biology/methods , Genome
5.
Org Lett ; 26(36): 7607-7613, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39231445

ABSTRACT

A rhodium-catalyzed one-pot access to valuable polycyclic frameworks of fluorenone-4-carboxylic acids and diphenic anhydrides via the oxidative dimeric cyclization of aromatic acids has been developed. This transformation proceeded via carboxyl-assisted 2-fold C-H activation followed by intramolecular Friedel-Crafts or dehydration reactions. The silver salt additive plays a vital role in the chemoselectivity of the products. Diphenic anhydride 3l exhibits a maximum fluorescence quantum yield of up to 59%.

6.
Ecotoxicol Environ Saf ; 283: 116943, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39216219

ABSTRACT

Lead (Pb) is an environmentally widespread bone toxic pollutant, contributes to the development of osteoporosis. Butyric acid, mainly produced by the fermentation of indigestible dietary fiber by gut microbiota, plays a pivotal role in the maintenance of bone homeostasis. However, the effects of butyric acids on the Pb induced osteoporosis have not yet been elucidated. In this study, our results showed that Pb exposure was negatively related to the abundance of butyric acid, in the Pb-exposed population and Pb-exposed mice. Pb exposure caused gut microbiota disorders, resulting in the decline of butyric acid-producing bacteria, such as Butyrivibrio_crossotus, Clostridium_sp._JN9, and the butyrate-producing enzymes through the acetyl-CoA pathway. Moreover, results from the NHANES data suggested that dietary intake of butyrate was associated with a reduced risk of osteoporosis in lead-burdened populations, particularly among men or participants aged 18-60 years. In addition, butyrate supplementation in mice with chronic Pb exposure improved the bone microarchitectures, repaired intestinal damage, upregulated the proportion of Treg cells. Taken together, these results demonstrated that chronic Pb exposure disturbs the gut-bone axis, which can be restored by butyric acid supplement. Our results suggest that butyrate supplementation is a possible therapeutic strategy for lead-induced bone toxicity.


Subject(s)
Butyrates , Gastrointestinal Microbiome , Lead , Osteoporosis , Animals , Gastrointestinal Microbiome/drug effects , Osteoporosis/chemically induced , Mice , Lead/toxicity , Male , Female , Butyrates/pharmacology , Butyric Acid/pharmacology , Humans , Adult , Bone and Bones/drug effects , Middle Aged , Young Adult , Adolescent , Mice, Inbred C57BL
7.
Antimicrob Agents Chemother ; 68(10): e0095924, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39171918

ABSTRACT

Helicobacter pylori (H. pylori) is closely associated with the diseases such as gastric sinusitis, peptic ulcers, and gastric adenocarcinoma. Its drug resistance is very severe, and new antibiotics are urgently needed. Nine comfrey compounds were screened by antimicrobial susceptibility testing, among which deoxyshikonin had the best inhibitory effect, with a minimum inhibitory concentration (MIC) of 0.5-1 µg/mL. In addition, deoxyshikonin also has a good antibacterial effect in an acidic environment, it is highly safe, and H. pylori does not readily develop drug resistance. Through in vivo experiments, it was proven that deoxyshikonin (7 mg/kg) had a beneficial therapeutic effect on acute gastritis in mice infected with the multidrug-resistant H. pylori BS001 strain. After treatment with desoxyshikonin, colonization of H. pylori in the gastric mucosa of mice was significantly reduced, gastric mucosal damage was repaired, inflammatory factors were reduced, and the treatment effect was better than that of standard triple therapy. Therefore, deoxyshikonin is a promising lead drug to solve the difficulty of drug resistance in H. pylori, and its antibacterial mechanism may be to destroy the biofilm and cause an oxidation reaction.


Subject(s)
Anti-Bacterial Agents , Helicobacter Infections , Helicobacter pylori , Microbial Sensitivity Tests , Helicobacter pylori/drug effects , Animals , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Helicobacter Infections/drug therapy , Helicobacter Infections/microbiology , Gastric Mucosa/drug effects , Gastric Mucosa/microbiology , Gastric Mucosa/pathology , Gastritis/drug therapy , Gastritis/microbiology , Drug Resistance, Multiple, Bacterial/drug effects , Anthraquinones/pharmacology , Male , Biofilms/drug effects
8.
Nutrients ; 16(16)2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39203903

ABSTRACT

Background: Sarcopenia has been recognized as a determining factor in surgical outcomes and is associated with an increased risk of postoperative complications and readmission. Diagnosis is currently based on clinical guidelines, which includes assessment of skeletal muscle mass but not quality. Ultrasound has been proposed as a useful point-of-care diagnostic tool to assess muscle quality, but no validated cut-offs for sarcopenia have been reported. Using novel automated artificial intelligence (AI) software to interpret ultrasound images may assist in mitigating the operator-dependent nature of the modality. Our study aims to evaluate the fidelity of AI-aided ultrasound as a reliable and reproducible modality to assess muscle quality and diagnose sarcopenia in surgical patients. Methods: Thirty-six adult participants from an outpatient clinic were recruited for this prospective cohort study. Sarcopenia was diagnosed according to Asian Working Group for Sarcopenia (AWGS) 2019 guidelines. Ultrasonography of the rectus femoris muscle was performed, and images were analyzed by an AI software (MuscleSound® (Version 5.69.0)) to derive muscle parameters including intramuscular adipose tissue (IMAT) as a proxy of muscle quality. A receiver operative characteristic (ROC) curve was used to assess the predictive capability of IMAT and its derivatives, with area under the curve (AUC) as a measure of overall diagnostic accuracy. To evaluate consistency between ultrasound users of different experience, intra- and inter-rater reliability of muscle ultrasound parameters was analyzed in a separate cohort using intraclass correlation coefficients (ICC) and Bland-Altman plots. Results: The median age was 69.5 years (range: 26-87), and the prevalence of sarcopenia in the cohort was 30.6%. The ROC curve plotted with IMAT index (IMAT% divided by muscle area) yielded an AUC of 0.727 (95% CI: 0.551-0.904). An optimal cut-off point of 4.827%/cm2 for IMAT index was determined with a Youden's Index of 0.498. We also demonstrated that IMAT index has excellent intra-rater reliability (ICC = 0.938, CI: 0.905-0.961) and good inter-rater reliability (ICC = 0.776, CI: 0.627-0.866). In Bland-Altman plots, the limits of agreement were from -1.489 to 1.566 and -2.107 to 4.562, respectively. Discussion: IMAT index obtained via ultrasound has the potential to act as a point-of-care evaluation for sarcopenia screening and diagnosis, with good intra- and inter-rater reliability. The proposed IMAT index cut-off maximizes sensitivity for case finding, supporting its use as an easily implementable point-of-care test in the community for sarcopenia screening. Further research incorporating other ultrasound parameters of muscle quality may provide the basis for a more robust diagnostic tool to help predict surgical risk and outcomes.


Subject(s)
Artificial Intelligence , Sarcopenia , Ultrasonography , Humans , Sarcopenia/diagnostic imaging , Pilot Projects , Ultrasonography/methods , Female , Male , Prospective Studies , Aged , Middle Aged , Reproducibility of Results , ROC Curve , Adult , Muscle, Skeletal/diagnostic imaging , Aged, 80 and over , Quadriceps Muscle/diagnostic imaging
9.
Small Methods ; : e2400891, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39188195

ABSTRACT

Lattice strain is widely investigated to improve the performance of heterogeneous catalysts, however, the effect of lattice strain is under-explored in high-entropy oxide based photocatalyst. In this study, noble-metal-free (CoCrMnFeNi)Ox with lattice strain is synthesized using a temperature-controlled, template-free and salt-assisted strategy. In the presence of lattice strain, an intensive internal electric field is formed in (CoCrMnFeNi)Ox, promoting the separation of photoinduced charge carriers. The size of the (CoCrMnFeNi)Ox can be tuned by varying the calcination temperature. Specifically, (CoCrMnFeNi)Ox prepared at a higher temperature possesses a smaller grain size exposing more active sites, resulting in an enhanced CO2 photomethanation performance. This work provides valuable insights for the rational design of the photocatalysts and highlights the promising role of high-entropy oxides in heterogeneous photocatalysis.

10.
Commun Biol ; 7(1): 960, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39117859

ABSTRACT

Previous studies in small samples have identified inconsistent cortical abnormalities in major depressive disorder (MDD). Despite genetic influences on MDD and the brain, it is unclear how genetic risk for MDD is translated into spatially patterned cortical vulnerability. Here, we initially examined voxel-wise differences in cortical function and structure using the largest multi-modal MRI data from 1660 MDD patients and 1341 controls. Combined with the Allen Human Brain Atlas, we then adopted transcription-neuroimaging spatial correlation and the newly developed ensemble-based gene category enrichment analysis to identify gene categories with expression related to cortical changes in MDD. Results showed that patients had relatively circumscribed impairments in local functional properties and broadly distributed disruptions in global functional connectivity, consistently characterized by hyper-function in associative areas and hypo-function in primary regions. Moreover, the local functional alterations were correlated with genes enriched for biological functions related to MDD in general (e.g., endoplasmic reticulum stress, mitogen-activated protein kinase, histone acetylation, and DNA methylation); and the global functional connectivity changes were associated with not only MDD-general, but also brain-relevant genes (e.g., neuron, synapse, axon, glial cell, and neurotransmitters). Our findings may provide important insights into the transcriptomic signatures of regional cortical vulnerability to MDD.


Subject(s)
Depressive Disorder, Major , Transcriptome , Humans , Depressive Disorder, Major/genetics , Depressive Disorder, Major/physiopathology , Female , Male , Adult , Cerebral Cortex/physiopathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/metabolism , Middle Aged , Magnetic Resonance Imaging , Gene Expression Profiling
11.
Inorg Chem ; 63(32): 15154-15160, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39080828

ABSTRACT

Recently, organic-inorganic hybrid perovskites exhibiting facile structural phase transitions have accumulated significant attention due to their switchable second-order nonlinear optical (NLO) properties, which hold significant promise for next-generation intelligent optoelectronic devices. In this study, we present a novel one-dimensional hexagonal hybrid perovskite, (4-methoxypiperidinium)CdCl3, which undergoes a reversible high-temperature structural phase transition at 389 K. Notably, (4-methoxypiperidinium)CdCl3 demonstrates switchable second-order NLO and dielectric properties, accompanied by symmetry breaking from the centrosymmetric Pnma to noncentrosymmetric Pna21 space group. Variable-temperature structure analyses reveal that this transition is mainly driven by the order-disorder transformation of the 4-methoxypiperidinium cations. Furthermore, it also features a promising photoluminescence performance with blue-light emission and a long lifetime of 25.34 ns. It is anticipated that this study will expand the family of hybrid perovskites exhibiting high-temperature phase transitions and offer valuable guidance for the design of new NLO switching materials with superior optoelectronic properties.

12.
bioRxiv ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39026880

ABSTRACT

Venous thrombosis (VT) is a common vascular disease associated with reduced survival and a high recurrence rate. Previous studies have shown that the accumulation of platelets and neutrophils at sites of endothelial cell activation is a primary event in VT, but a role for platelet αIIbß3 in the initiation of venous thrombosis has not been established. This task has been complicated by the increased bleeding linked to partial agonism of current αIIbß3 inhibitory drugs such as tirofiban (Aggrastat ® ). Here, we show that m-tirofiban, an engineered version of tirofiban, is not a partial agonist of αIIbß3. This is based on its cryo-EM structure in complex with human full-length αIIbß3 and its inability to increase expression of an activation-sensitive epitope on platelet αIIbß3. m-tirofiban abolished agonist-induced platelet aggregation ex vivo at concentrations that preserved clot retraction and markedly suppressed the accumulation of platelets, neutrophils, and fibrin on thrombin-activated endothelium in real-time using intravital microscopy in a mouse model of venous thrombogenesis. Unlike tirofiban, however, m-tirofiban did not increase bleeding at the thrombosis-inhibitory dose. These findings establish a key role for αIIbß3 in the initiation of VT, provide a guiding principle for designing potentially safer inhibitors for other integrins, and suggest that pure antagonists of αIIbß3 like m-tirofiban merit further consideration as potential thromboprophylaxis agents in patients at high-risk for VT and hemorrhage.

13.
Insects ; 15(7)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39057267

ABSTRACT

Endophytes, prevalent in plants, mediate plant-insect interactions. Nevertheless, our understanding of the key members of endophyte communities involved in inhibiting or assisting EAB infestation remains limited. Employing ITS and 16S rRNA high-throughput sequencing, along with network analysis techniques, we conducted a comprehensive investigation into the reaction of endophytic fungi and bacteria within F. bungeana phloem by comparing EAB-infested and uninfected samples. Our findings reveal that EAB infestation significantly impacts the endophytic communities, altering both their diversity and overall structure. Interestingly, both endophytic fungi and bacteria exhibited distinct patterns in response to the infestation. For instance, in the EAB-infested phloem, the fungi abundance remained unchanged, but diversity decreased significantly. Conversely, bacterial abundance increased, without significant diversity changes. The fungi community structure altered significantly, which was not observed in bacteria. The bacterial composition in the infested phloem underwent significant changes, characterized by a substantial decrease in beneficial species abundance, whereas the fungal composition remained largely unaffected. In network analysis, the endophytes in infested phloem exhibited a modular topology, demonstrating greater complexity due to an augmented number of network nodes, elevated negative correlations, and a core genera shift compared to those observed in healthy phloem. Our findings increase understanding of plant-insect-microorganism relationships, crucial for pest control, considering endophytic roles in plant defense.

14.
Plant Dis ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982672

ABSTRACT

Pomegranate (Punica granatum) is an important fruit crop for therapeutic and food applications. In June 2022, brown spots were observed on the fruit surface of pomegranate cultivar named Guangyan in Mengzi (23°20'6''N,103°25'5''E), Yunnan, China. The early spots appeared as circular or irregular lesions, measuring 1~1.5 mm in diameter. They were light brown with a clear boundary between disease and healthy tissues. Over time, these spots developed into polygonal lesions covering the entire fruit surface. Eventually, the diseased fruits decayed, and more than 50% of fruits were infected in pomegranate orchards. The tissues from the interface between health and disease were cut down, immersed in 75% ethanol for 15 s, then 5% NaOCl disinfecting for 2 min, washed three times with sterile water, and the PDA cultured at 26 °C in an incubator under dark conditions. Twenty-five samples were collected for pathogen isolation, ten fungal isolates were obtained by single spore germination, and these isolates had similar morphological characters. The colonies were white with 81 mm diameter at 7 days of incubation, containing undulate edges with dense aerial mycelium. After 14 days, the black conidiomata formed superficially, gathering into black droplets. Conidiogenous cells were hyaline, short, and filiform. Conidia were fusiform, straight or slightly curved, and comprised five cells, 24.12 to 34.53 (x̄=29.78) µm × 4.21 to 12.15 (x̄=8.68) µm (n=50). The three median cells were 13.13 to 25.22 µm (x̄=18.54), dark brown, whose septa and periclinal walls were darker than the other two cells. The apical cells showed two to four appendages, 12.31 to 29.15 (x̄=21.56) µm. Only a single appendage was found on the basal cell, 2.34 to 7.16 µm. Based on morphological features, these isolates were identified as Neopestalotiopsis clavispora (Maharachchikumbura et al., 2012, 2014). Molecular identification of isolate YNSL-3 was performed by amplification and sequencing of ITS4/ITS5, BT2A/ BT2B and EF1-728F/EF-2, respectively (White et al. 1990, Glass et al.1995, Carbone et al. 1999, O'Donnell et al. 1998). These base sequences were deposited in GenBank with accession numbers OQ891378 (ITS), OR088917 (Tef) and OR513439(Tub), respectively. BLAST searches of the sequences revealed 100% (478/478 bp), 100% (484/484 bp), and 94.67% (426/450 bp) homology with those of N. clavispora NM16311a from GenBank (LC209216, LC209220, and LC209221), respectively. Phylogenetic analysis (IQ-TREE) by maximum likelihood method showed that the isolate YNSL-3 was clustered with N. clavispora. The pathogenicity was tested with the isolate of YNSL-3, YNSL-5 and YNSL-8 by detached assay. The fruit surface of pomegranate cultivar Guangyan was wounded with a sterilized needle. The mycelial blocks (5mm2) of isolates cultured on PDA for 7 days were attached to the points of inoculation. Controls were inoculated with sterile PDA agar. All inoculated fruits were maintained in a growth chamber at 26°C with 75% relative humidity. The test was performed thrice. The brown lesions were observed after 7 days, whereas the controls showed no symptoms. The same pathogens reisolated were identical to the original isolates based on morphological characterization and molecular analyses. N. clavispora could cause different diseases in many plants (Rajashekara et al. 2023, Loredana et al. 2020). To our knowledge, this is the first report of fruit brown spot on Punica granatum caused by N. clavispora in China. This finding will help improve management strategies against the fruit brown spots on P. granatum in China.

15.
J Biochem Mol Toxicol ; 38(7): e23759, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39003567

ABSTRACT

Fetal growth restriction (FGR) severely affects the health outcome of newborns and represents a major cause of perinatal morbidity. The precise involvement of circCULT1 in the progression of FGR remains unclear. We performed next-generation sequencing and RT-qPCR to identify differentially expressed circRNAs in placental tissues affected by FGR by comparing them with unaffected counterparts. Edu, flow cytometry, and transwell assay were conducted to detect HTR8/SVneo cell's function in regard to cell proliferation, migration, and invasion. The interaction between circCUL1 and hsa-miR-30e-3p was assessed through dual-luciferase reporter assays, validation of the interaction between circCUL1 and ANXA1 was performed using RNA pulldown and immunoprecipitation assays. Western blot analysis was performed to evaluate protein levels of autophagy markers and components of the PI3K/AKT signaling pathway. A knockout (KO) mouse model was established for homologous mmu-circ-0001469 to assess fetal mouse growth and development indicators. Our findings revealed an upregulation of circCUL1 expression in placental tissues from patients with FGR. We found that suppression of circCUL1 increased the trophoblast cell proliferation, migration, and invasion, circCUL1 could interact with hsa-miR-30e-3p. Further, circCUL1 stimulated autophagy, modulating trophoblast cell autophagy via the ANXA1/PI3K/AKT pathway, and a notable disparity was observed, with KO mice displaying accelerated embryo development and exhibiting heavier placentas in comparison to wild-type C57BL/6 mice. By modulating the ANXA1/PI3K/AKT signaling pathway through the interaction with hsa-miR-30e-3p, circCUL1 promotes autophagy while concurrently suppressing trophoblast cell proliferation, migration, and invasion. These findings offer novel insights into potential diagnostic markers and therapeutic targets for FGR research.


Subject(s)
Autophagy , Cell Movement , Fetal Growth Retardation , MicroRNAs , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Trophoblasts , Animals , Female , Humans , Mice , Pregnancy , Annexin A1 , Fetal Growth Retardation/metabolism , Fetal Growth Retardation/genetics , Fetal Growth Retardation/pathology , Mice, Knockout , MicroRNAs/metabolism , MicroRNAs/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Signal Transduction , Trophoblasts/metabolism , Trophoblasts/pathology
16.
World J Clin Cases ; 12(20): 4057-4064, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39015897

ABSTRACT

BACKGROUND: Psychological factors such as anxiety and depression will not only aggravate the symptoms of chronic obstructive pulmonary disease (COPD) patients and reduce the quality of life of patients, but also affect the treatment effect and long-term prognosis. Therefore, it is of great significance to explore the clinical application of senile comprehensive assessment in the treatment of COPD and its influence on psychological factors such as anxiety and depression. AIM: To explore the clinical application of comprehensive geriatric assessment in COPD care and its impact on anxiety and depression in elderly patents. METHODS: In this retrospective study, 60 patients with COPD who were hospitalized in our hospital from 2019 to 2020 were randomly divided into two groups with 30 patients in each group. The control group was given routine nursing, and the observation group was given comprehensive assessment. Clinical symptoms, quality of life [COPD assessment test (CAT) score], anxiety and depression Hamilton Anxiety Rating Scale (HAMA) and Hamilton Depression Rating Scale (HAMD) were compared between the two groups. RESULTS: CAT scores in the observation group decreased from an average of 24.5 points at admission to an average of 18.3 points at discharge, and in the control group from an average of 24.7 points at admission to an average of 18.3 points at discharge. The average score was 22.1 (P < 0.05). In the observation group, HAMA scores decreased from 14.2 points at admission to 8.6 points at discharge, and HAMD scores decreased from 13.8 points at admission to 7.4 points at discharge. The mean HAMD scores in the control group decreased from an average of 14.5 at admission to an average of 12.3 at discharge, and from an average of 14.1 at admission to an average of 11.8 at discharge. CONCLUSION: The application of comprehensive geriatric assessment in COPD care has a significant effect on improving patients' clinical symptoms and quality of life, and can effectively reduce patients' anxiety and depression.

17.
Front Pharmacol ; 15: 1348688, 2024.
Article in English | MEDLINE | ID: mdl-38948474

ABSTRACT

Purpose: To evaluate the cost-effectiveness of sotorasib versus docetaxel in non-small cell lung cancer (NSCLC) patients with KRASG12C mutation from the China and United States'social perspective. Materials and Methods: A Markov model that included three states (progression-free survival, post-progression survival, and death) was developed. Incremental cost-effectiveness ratio (ICER), quality-adjusted life-year (QALY), and incremental QALY were calculated for the two treatment strategies. One-way sensitivity analysis was used to investigate the factors that had a greater impact on the model results, and tornado diagrams were used to present the results. Probabilistic sensitivity analysis was performed with 1,000 Monte Carlo simulations. Assume distributions based on parameter types and randomly sample all parameter distributions each time., The results were presented as cost-effectiveness acceptable curves. Results: This economic evaluation of data from the CodeBreak 200 randomized clinical trial. In China, sotorasib generated 0.44 QAYL with a total cost of $84372.59. Compared with docetaxel, the ICER value of sotorasib was $102701.84/QALY, which was higher than willingness to pay (WTP), so sotorasib had no economic advantage. In the US, sotorasib obtained 0.35 QALY more than docetaxel, ICER was $15,976.50/QALY, which was more than 1 WTP but less than 3 WTP, indicating that the increased cost of sotorasib was acceptable. One-way sensitivity analysis showed that the probability of sotorasib having economic benefits gradually increased when the cost of follow-up examination was reduced in China. And there was no influence on the conclusions within the range of changes in China. When the willingness to pay (WTP) exceeds $102,500, the probability of sotorasib having cost effect increases from 0% to 49%. Conclusion: Sotorasib had a cost effect from the perspective in the United States. However, sotorasib had no cost effect from the perspective in China, and only when the WTP exceeds $102,500, the probability of sotorasib having cost effect increases from 0% to 49%.

18.
Org Lett ; 26(23): 4857-4862, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38838191

ABSTRACT

The efficient construction of π-conjugated polycyclic heteroarenes represents a significant task in the field of functional materials. A one-step oxidative tandem cyclization of aromatic acids with (benzo)thiophenes was developed to access planar sulfur-containing polycyclic heteroarenes. This protocol undergoes intermolecular cross-dehydrogenative coupling followed by intramolecular Friedel-Crafts acylation and provides a facile pathway to planar polycyclic compounds from inexpensive reactants. The synthesized heteroarenes serving as lipid-droplet-targeted probes exhibit outstanding performance with favorable biocompatibility and photostability.

19.
BMC Plant Biol ; 24(1): 540, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872080

ABSTRACT

BACKGROUND: Diosgenin is an important steroidal precursor renowned for its diverse medicinal uses. It is predominantly sourced from Dioscorea species, particularly Dioscorea zingiberensis. Dioscorea zingiberensis has an ability to accumulate 2-16% diosgenin in its rhizomes. In this study, a diverse population of 180 D. zingiberensis accessions was used to evaluate the genomic regions associated with diosgenin biosynthesis by the genome wide association study approach (GWAS). RESULTS: The whole population was characterized for diosgenin contents from tubers by gas chromatography mass spectrometry. The individuals were genotyped by the genotyping-by-sequencing approach and 10,000 high-quality SNP markers were extracted for the GWAS. The highest significant marker-trait-association was observed as an SNP transversion (G to T) on chromosome 10, with 64% phenotypic variance explained. The SNP was located in the promoter region of CYP94D144 which is a member of P450 gene family involved in the independent biosynthesis of diosgenin from cholesterol. The transcription factor (TF) binding site enrichment analysis of the promoter region of CYP94D144 revealed NAC TF as a potential regulator. The results were further validated through expression profiling by qRT-PCR, and the comparison of high and low diosgenin producing hybrids obtained from a bi-parental population. CONCLUSIONS: This study not only enhanced the understanding of the genetic basis of diosgenin biosynthesis but also serves as a valuable reference for future genomic investigations on CYP94D144, with the aim of augmenting diosgenin production in yam tubers.


Subject(s)
Dioscorea , Diosgenin , Genome-Wide Association Study , Plant Tubers , Polymorphism, Single Nucleotide , Diosgenin/metabolism , Dioscorea/genetics , Dioscorea/metabolism , Plant Tubers/genetics , Plant Tubers/metabolism , Genetic Variation
20.
Toxicol Lett ; 398: 127-139, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38914176

ABSTRACT

Increasing epidemiological evidence has shown that PM2.5 exposure is significantly associated with the occurrence of osteoporosis. It has been well demonstrated that PM2.5 exposure enhanced the differentiation and function of osteoclasts by indirectly causing chronic inflammation, while the mechanism in osteoblasts remains unclear. In our study, toxic effects were evaluated by direct exposure of 20-80 µg/ml PM2.5 to MC3T3-E1 cells and BMSCs. The results showed that PM2.5 exposure did not affect cell viability via proliferation and apoptosis, but significantly inhibited osteoblast differentiation in a dose-dependent manner. Osteogenic transcription factors Runx2 and Sp7 and other biomarkers Alp and Ocn decreased after PM2.5 exposure. RNA-seq revealed TGF-ß signaling was involved in PM2.5 exposure inhibited osteoblast differentiation, which led to P-Smad1/5 and P-Smad2 reduction in the nucleus by increasing the ubiquitination and degradation of Smad4. At last, the inflammation response increased in MC3T3-E1 cells with PM2.5 exposure. Moreover, the mRNA levels of Mmp9 increased in bone marrow-derived macrophage cells treated with the conditional medium collected from MC3T3-E1 cells exposed to PM2.5. Overall, these results indicated that PM2.5 exposure inhibits osteoblast differentiation and concurrently increases the maturation of osteoclasts. Our study provides in-depth mechanistic insights into the direct impact of PM2.5 exposure on osteoblast, which would indicate the unrecognized role of PM2.5 on osteoporosis.


Subject(s)
Cell Differentiation , Osteoblasts , Particulate Matter , Smad4 Protein , Ubiquitination , Osteoblasts/drug effects , Osteoblasts/metabolism , Animals , Cell Differentiation/drug effects , Smad4 Protein/metabolism , Smad4 Protein/genetics , Mice , Particulate Matter/toxicity , Ubiquitination/drug effects , Signal Transduction/drug effects , Osteogenesis/drug effects , Osteoclasts/drug effects , Osteoclasts/metabolism , Air Pollutants/toxicity , Cell Line , Cell Survival/drug effects , Transforming Growth Factor beta/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , Proteolysis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL