Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.222
Filter
1.
iScience ; 27(9): 110697, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39262800

ABSTRACT

Increasing air pollution could undermine human health, but the causal link between air pollution and eye and ear health has not been well-studied. Based on four-week-level records of eye and ear health over 1991-2015 provided by the China Health and Nutrition Survey, we estimate the causal effect of air pollution on eye and ear health. Using two-stage least squares estimation, we find that eye or ear disease possibility rises 1.48% for a 10 µg/m3 increase in four-week average PM2.5 concentration. The impacts can last about 28 weeks and will be insignificant afterward. Females, individuals aged 60 years and over, with high exposure environments, relatively poor economic foundations, and low knowledge levels are more vulnerable to such negative influences. Behavioral channels like more smoking activities and less sleeping activities could partly explain this detrimental effect. Our findings enlighten how to minimize the impact of air pollution and protect public health.

2.
Front Cell Infect Microbiol ; 14: 1442062, 2024.
Article in English | MEDLINE | ID: mdl-39224703

ABSTRACT

Background: Klebsiella pneumoniae is a major cause of hospital-acquired infections (HAIs), primarily spread through environmental contamination in hospitals. The effectiveness of current chemical disinfectants is waning due to emerging resistance, which poses environmental hazards and fosters new resistance in pathogens. Developing environmentally friendly and effective disinfectants against multidrug-resistant organisms is increasingly important. Methods: This study developed a bacteriophage cocktail targeting two common carbapenem-resistant Klebsiella pneumoniae (CRKP) strains, ST11 KL47 and ST11 KL64. The cocktail was used as an adjunctive disinfectant in a hospital's respiratory intensive care unit (RICU) via ultrasonic nebulization. Digital PCR was used to quantify CRKP levels post-intervention. The microbial community composition was analyzed via 16S rRNA sequencing to assess the intervention's impact on overall diversity. Results: The phage cocktail significantly reduced CRKP levels within the first 24 hours post-treatment. While a slight increase in pathogen levels was observed after 24 hours, they remained significantly lower than those treated with conventional disinfectants. 16S rRNA sequencing showed a decrease in the target pathogens' relative abundance, while overall species diversity remained stable, confirming that phages selectively target CRKP without disrupting ecological balance. Discussion: The findings highlight the efficacy and safety of phage-based biocleaners as a sustainable alternative to conventional disinfectants. Phages selectively reduce multidrug-resistant pathogens while preserving microbial diversity, making them a promising tool for infection control.


Subject(s)
Bacteriophages , Decontamination , Intensive Care Units , Klebsiella pneumoniae , RNA, Ribosomal, 16S , RNA, Ribosomal, 16S/genetics , Klebsiella pneumoniae/virology , Klebsiella pneumoniae/genetics , Decontamination/methods , Bacteriophages/genetics , Humans , Polymerase Chain Reaction/methods , Cross Infection/prevention & control , Cross Infection/microbiology , Disinfectants/pharmacology , Klebsiella Infections/prevention & control , Klebsiella Infections/microbiology , Sequence Analysis, DNA
3.
Adv Mater ; : e2406429, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39254352

ABSTRACT

Aqueous zinc ion batteries have gained attention as viable energy storage systems, yet the occurrence of detrimental side reactions and Zn dendrite formation undermines the efficiency of Zn anodes. Controlling water activity have proven to be an effective strategy in mitigating these challenges. However, strategies such as electrolyte design and electrode protection layer show weakness to varying degrees. Here, a new oxygen-functionalized biomass bamboo membrane separator (denoted as BM) is proposed to restrain the activity of water molecules. This BM separator features a unique, multi-tiered 2D interlayer that facilitates rapid ion diffusion. Additionally, the oxygen functional groups of the BM separator can form hydrogen bonds with water molecules, effectively transforming water molecules from a free state to a bound state. Consequently, the Zn/Zn asymmetric coin cell using BM can work at the ultrahigh rate and capacity of 30 mA cm-2 and 30 mAh cm-2 for more than 80 h while its counterparts using glass fiber can barely work. Moreover, full cells using BM separator exhibited a capacity retention of 89.7% after 1000 cycles at 10 A g-1. This study reveals the important influence of water-limited activity on Zn anode protection and provides an avenue for the design of novel separator.

4.
Small ; : e2405946, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39246162

ABSTRACT

Under large current densities, the excessive hydroxide ion (OH) consumption hampers alkaline water splitting involving the oxygen evolution reaction (OER). High OH concentration (≈30 wt.%) is often used to enhance the catalytic activity of OER, but it also leads to higher corrosion in practical systems. To achieve higher catalytic activity in low OH concentration, catalysts on magnetic frame (CMF) are built to utilize the local magnetic convection induced from the host frame's magnetic field distributions. This way, a higher reaction rate can be achieved in relatively lower OH concentrations. A CMF model system with catalytically active CoFeOx nanograins grown on the magnetic Ni foam is demonstrated. The OER current of CoFeOx@NF receives ≈90% enhancement under 400 mT (900 mA cm-2 at 1.65 V) compared to that in zero field, and exhibits remarkable durability over 120 h. As a demonstration, the water-splitting performance sees a maximum 45% magnetic enhancement under 400 mT in 1 m KOH (700 mA cm-2 at 2.4 V), equivalent to the concentration enhancement of the same electrode in a more corrosive 2 m KOH electrolyte. Therefore, the catalyst-on-magnetic-frame strategy can make efficient use of the catalysts and achieve higher catalytic activity in low OH concentration by harvesting local magnetic convection.

6.
Foods ; 13(15)2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39123576

ABSTRACT

Lycium barbarum L., an important functional food in China, has antioxidant and antiaging activity. However, the exact antioxidant activity mechanism of Lycium barbarum extracts (LBE) is not well understood. Therefore, a carbendazim (CBZ)-induced PC12 cell injury model was constructed and vitrificated to study the antioxidant activity of fresh LBE on the basis of extraction parameter optimization via the full factorial design of experiments (DOE) method. The results showed that the pretreatment of PC12 cells with LBE could reduce the reactive oxygen species (ROS) level by 14.6% and inhibited the mitochondrial membrane potential (MMP) decline by 12.0%. Furthermore, the integrated analysis revealed that LBE played an antioxidant role by activating oxidative phosphorylation (OXPHOS) and restoring MMP, maintaining the tricarboxylic acid (TCA) cycle stability, and regulating the GSH metabolic pathway. The results of the present study provide new ideas for the understanding of the antioxidant function of LBE from a global perspective.

7.
Pest Manag Sci ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39189553

ABSTRACT

BACKGROUND: Epicoccum sorghinum is a pathogenic fungus that causes leaf spot in a wide range of plants, including maize, and synthesizes the mycotoxin tenuazonic acid (TEA), which is carcinogenic. Despite the relevant economic and yield losses caused by E. sorghinum worldwide, methods for the control of this pathogen are lacking. RESULTS: In this work, the efficacy of Bacillus-produced dipicolinic acid (DPA) for control of E. sorghinum was evaluated using in vitro and in vivo assays, and compared with the efficacy of three commercial fungicides, including carbendazim, prochloraz, and thiram. DPA inhibited E. sorghinum mycelial growth, and conidia germination, and produced important alterations in E. sorghinum hyphae. Interestingly, 10 mM DPA reduced TEA biosynthesis by 86.6%. Although DPA rapidly degraded on maize leaves, 10 mM DPA showed higher preventive (67.4% lesion length inhibition) and inhibitory (89.5% lesion length inhibition) efficacies for the control of E. sorghinum on maize leaves compared to the commercial fungicides. CONCLUSIONS: Collectively, this study presents the first method for the control of E. sorghinum on maize and demonstrates that DPA application is a suitable approach to inhibit E. sorghinum symptoms in plants and TEA biosynthesis. © 2024 Society of Chemical Industry.

8.
Talanta ; 280: 126719, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39213889

ABSTRACT

Fluoroquinolone antibiotics, a class of animal and human useful antibiotics, are widely utilized in numerous fields including biomedical science, animal husbandry, and aquatic finfish farming. Its high demand and wide application have directly or indirectly led to substantial consumption and discharge of antibiotics, affecting not only the environment but also endangering human health through bioaccumulation. Hence, rapid and precise detection of trace antibiotics in water, food, and biological samples is critically important. This research synthesized Tb3+/Eu3+ complexes with dual emission centers, and a fluorescence sensor array was constructed with the fluorescence intensity ratio F1/F2 of the two emission centers as a signal. Different sensitization effect of fluoroquinolone antibiotics towards lanthanide complexes aided in differentiating five fluoroquinolone antibiotics from two others. Additionally, the sensor array can effectively detect fluoroquinolone antibiotics in real samples, suggesting its reliability and practicality of complex sample analysis. The excellent qualitative and quantitative analysis ability of this strategy for fluoroquinolone antibiotics offers a novel perspective for antibiotic residue detection, showcasing a new opportunity for lanthanide complex application in sensor arrays.

9.
Shanghai Kou Qiang Yi Xue ; 33(3): 273-278, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39104343

ABSTRACT

PURPOSE: To explore the efficacy of denture occlusal plate combined with comprehensive physical therapy for temporomandibular joint disc displacement without reduction(ADDwoR). METHODS: Sixty patients of ADDwoR and dentition defect or severely worn teeth who visited the Department of Orthodontics and Prosthodontics of Hengshui People's Hospital from January 2019 to December 2020 were selected and randomly divided into denture occlusal plate group (group A) and denture occlusal plate + comprehensive physical therapy group (group B) according to the treatment methods. Maximum mouth opening (MMO) and visual analog pain score(VAS) among all patients were recorded before treatment and every three weeks during three months of treatment. Cone-beam CT(CBCT) was taken before and 3 months after treatment. The changes in clinical efficacy indicators before and after treatment and CBCT data between the two groups were analyzed. Statistical analysis was performed with SPSS 26.0 software package. RESULTS: The differences of VAS of group A and B were statistically significant from before treatment to three weeks after treatment(P<0.05), and group B decreases more. From 3 weeks after treatment, there was a significant difference of group B for MMO and VAS before treatment (P<0.05). From 9 weeks after treatment, there was a significant difference of group A for MMO before treatment (P<0.05), but there was no significant difference in MMO and VAS between group A and B(P>0.05). CBCT showed narrowed anterior joint space, widened posterior joint space, enlarged superior joint space, decreased horizontal angle of the condyle and increased slope of joint nodules (P<0.05). The difference between joint depth, anteroposterior diameter of the condyle, internal and external diameter was not significant (P>0.05). There was significant differences in anterior, superior, and posterior joint space, condylar level angle, and slope of joint nodules of group B compared with group A(P<0.05). CONCLUSIONS: Denture occlusal plate can effectively improve symptoms of ADDwoR, and denture occlusal plate combined with comprehensive physical therapy can quickly improve mouth opening and reduce pain in the joint area.


Subject(s)
Physical Therapy Modalities , Humans , Cone-Beam Computed Tomography/methods , Temporomandibular Joint Disc , Treatment Outcome , Temporomandibular Joint Disorders/therapy , Dentures , Male , Female , Pain Measurement
10.
Cell Biol Int ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090819

ABSTRACT

Oral squamous cell carcinoma (OSCC) is the most common oral malignancy. DEAD/H-box helicase 11 (DDX11), a DNA helicase, has been implicated in the progression of several cancers. Yet, the precise function of DDX11 in OSCC is poorly understood. The DDX11 expression in OSCC cells and normal oral keratinocytes was evaluated in the Gene Expression Omnibus database (GSE146483 and GSE31853). SCC-4 and CAL-27 cells expressing doxycycline-inducible DDX11 or DDX11 shRNA were generated by lentiviral infection. The role of DDX11 in OSCC cells was determined by 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay, colony formation assay, flow cytometry assay, TUNEL staining, and western blot. The effects of DDX11 on tumor growth were explored in a xenograft nude mouse model. The relationship between DDX11 and transcription factor Yin Yang-1 (YY1) was researched using the dual luciferase report assay and chromatin immunoprecipitation assay. DDX11 expression was significantly upregulated in OSCC cells. Knockdown of DDX11 inhibited cell proliferation, induced cell cycle arrest, and suppressed PI3K-AKT pathway, while DDX11 overexpression showed opposite effects. The number of apoptotic cells was increased in DDX11 silenced cells. DDX11 upregulation or knockdown accelerated or suppressed tumor growth in vivo, respectively. Moreover, the YY1 bound and activated the DDX11 promoter, resulting in increasing DDX11 expression. Forced expression DDX11 reversed the anticancer effects of YY1 silencing on OSCC cells. DDX11 has tumor-promoting function in OSCC and is transcriptionally regulated by YY1, indicating that DDX11 may serve as a potential target for the OSCC treatment.

11.
Radiother Oncol ; 200: 110512, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39216825

ABSTRACT

PURPOSE: In post-hoc analyses of phaseIII randomized controlled study(STELLAR), to analyzethe prognostic impact oflateral pelvic lymph node (LPLN)metastasis in locally advanced rectal cancer (LARC). METHODS: LPLN metastasis was defined as a short diameter > 7 mm on magnetic resonance imaging (MRI).The studyincluded 591 patients with LARC.All patients received neoadjuvant (chemo)radiotherapy combined withradical resection. RESULTS: Among 591 patients, 99 (16.8 %) were diagnosed with LPLN metastasis, mostly with unilateral metastasis (79.8 %), with internal iliac lymph node metastasis being more common (81.8 %).Significant differences were found among with and without LPLN metastasis in rectal segmentation (P=0.001),N disease (P<0.001), mesenteric LN metastasis or not (P=0.030). The median follow-up timewas 34.0 months, three-year disease-free survival (DFS),overall survival (OS), andmetastasis-free survival (MFS)were significantly lower in LPLN metastaticgroup than those in LPLN non-metastaticgroup (51.4 % vs. 68.2 %, P<0.001; 71.8 % vs. 84.2 %, P=0.006; 60.8 % vs. 80.1 %,P<0.001), respectively; while there were no significant differences in locoregional recurrence(11.4 % vs. 8.5 %, P=0.564). Multivariate analysis found that LPLN metastasis was an independent prognostic factor affecting DFS (P=0.005), OS (P=0.036),MFS (P=0.001).No significantly survival benefit was observed for the short-term radiotherapy based total neoadjuvant therapy compared to long-term concurrent chemoradiotherapy. CONCLUSIONS: LPLN metastasis observed byMRI should be considered in LARC patients, especially in populations with lowrectal cancer, N2 disease, and mesenteric LN metastasis. LPLN metastasis diagnosed by MRI is a significant and independent risk factor and is associated with worse DFS, OS, MFS.

12.
Food Chem ; 461: 140903, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39178543

ABSTRACT

Lycium barbarum L. (L. barbarum) is renowned worldwide for its nutritional and medicinal benefits. Rapid and accurate identification of L.barbarum's geographic origin is essential because its nutritional content, medicinal efficacy, and market price significantly vary by region. This study proposes an innovative method combining hyperspectral imaging (HSI), nuclear magnetic resonance (NMR), and an improved ResNet-34 deep learning model to accurately identify the geographical origin and geographical indication (GI) markers of L.barbarum. The deep learning model achieved a 95.63% accuracy, surpassed traditional methods by 6.26% and reduced runtime by 29.9% through SHapley Additive exPlanations (SHAP)-based feature selection. Pearson correlation analysis between GI markers and HSI characteristic wavelengths enhanced the interpretability of HSI data and further reduced runtime by 33.99%. This work lays the foundation for portable multispectral devices, offering a rapid, accurate, and cost-effective solution for quality assurance and market regulation of L.barbarum products.

13.
J Nanobiotechnology ; 22(1): 508, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39182069

ABSTRACT

Regenerating inflamed bone defects represents a severe clinical challenge due to the undesirable inflammatory microenvironment. The inflammatory stimulus poses a weighty threat to the regenerative capacity of endogenously derived mesenchymal stem cells (MSCs), which are mainly responsible for osteogenic differentiation, thereby resulting in compromised endogenous bone formation. Consequently, alleviating the biological characteristics of inflammatory-impaired MSCs is crucial for promoting inflamed bone regeneration. Nano-sized small extracellular vesicles (sEVs) have emerged as promising therapeutic tools to orchestrate MSCs fate due to their intrinsic biocompatibility and encapsulated bioactive contents. In the present study, we extracted sEVs from youthful and adult dental pulp MSCs and explored their ability to recover inflammation-compromised periodontal ligament stem cells (IPDLSCs). The results indicated that both types of sEVs were capable of facilitating IPDLSCs osteogenesis. However, young sEVs exhibited a more robust potential at a lower concentration compared to adult sEVs. Mechanically, young sEVs enhanced the expression of bone morphogenetic protein 4 (BMP4) via delivering the protein Biglycan, which correspondingly promoted the osteogenic capability of IPDLSCs. Collectively, our findings emphasized that young sEVs hold enormous potential to rescue the inherent function and regenerative competence of inflammation-impaired MSCs, shedding light on their promising therapeutic prospects for infected bone regeneration.


Subject(s)
Biglycan , Bone Regeneration , Cell Differentiation , Extracellular Vesicles , Mesenchymal Stem Cells , Osteogenesis , Periodontal Ligament , Periodontal Ligament/cytology , Periodontal Ligament/metabolism , Bone Regeneration/drug effects , Biglycan/metabolism , Extracellular Vesicles/metabolism , Osteogenesis/drug effects , Humans , Mesenchymal Stem Cells/metabolism , Inflammation/metabolism , Bone Morphogenetic Protein 4/metabolism , Cells, Cultured , Dental Pulp/cytology , Animals , Stem Cells/metabolism
14.
Biomimetics (Basel) ; 9(8)2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39194465

ABSTRACT

Aiming at the problem that the Osprey Optimization Algorithm (OOA) does not have high optimization accuracy and is prone to falling into local optimum, an Improved Osprey Optimization Algorithm Based on a Two-Color Complementary Mechanism for Global Optimization (IOOA) is proposed. The core of the IOOA algorithm lies in its unique two-color complementary mechanism, which significantly improves the algorithm's global search capability and optimization performance. Firstly, in the initialization stage, the population is created by combining logistic chaos mapping and the good point set method, and the population is divided into four different color groups by drawing on the four-color theory to enhance the population diversity. Secondly, a two-color complementary mechanism is introduced, where the blue population maintains the OOA core exploration strategy to ensure the stability and efficiency of the algorithm; the red population incorporates the Harris Hawk heuristic strategy in the development phase to strengthen the ability of local minima avoidance; the green group adopts the strolling and wandering strategy in the searching phase to add stochasticity and maintain the diversity; and the orange population implements the optimized spiral search and firefly perturbation strategies to deepen the exploration and effectively perturb the local optimums, respectively, to improve the overall population diversity, effectively perturbing the local optimum to improve the performance of the algorithm and the exploration ability of the solution space as a whole. Finally, to validate the performance of IOOA, classical benchmark functions and CEC2020 and CEC2022 test sets are selected for simulation, and ANOVA is used, as well as Wilcoxon and Friedman tests. The results show that IOOA significantly improves convergence accuracy and speed and demonstrates high practical value and advantages in engineering optimization applications.

15.
J Orthop Translat ; 48: 89-106, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39189009

ABSTRACT

Background: Fibrovascular scar healing of bone-tendon interface (BTI) instead of functional fibrocartilage regeneration is the main concern associated with unsatisfactory prognosis in rotator cuff repair. Mesenchymal stem cells (MSCs) exosomes have been reported to be a new promising cell-free approach for rotator cuff healing. Whereas, controversies abound in whether exosomes of native MSCs alone can effectively induce chondrogenesis. Purpose: To explore the effect of exosomes derived from low-intensity pulsed ultrasound stimulation (LIPUS)-preconditioned bone marrow mesenchymal stem cells (LIPUS-BMSC-Exos) or un-preconditioned BMSCs (BMSC-Exos) on rotator cuff healing and the underlying mechanism. Methods: C57BL/6 mice underwent unilateral supraspinatus tendon detachment and repair were randomly assigned to saline, BMSCs-Exos or LIPUS-BMSC-Exos injection therapy. Histological, immunofluorescent and biomechanical tests were detected to investigate the effect of exosomes injection on BTI healing and muscle fatty infiltration of the repaired rotator cuff. In vitro, native BMSCs were incubated with BMSC-Exos or LIPUS-BMSC-Exos and then chondrogenic/adipogenic differentiation were observed. Further, quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the chondrogenesis/adipogenesis-related miRNA profiles of LIPUS-BMSC-Exos and BMSC-Exos. The chondrogenic/adipogenic potential of the key miRNA was verified through function recover test with its mimic and inhibitor. Results: The results indicated that the biomechanical properties of the supraspinatus tendon-humeral junction were significantly improved in the LIPUS-BMSC-Exos group than that of the BMSCs-Exos group. The LIPUS-BMSC-Exos group also exhibited a higher histological score and more newly regenerated fibrocartilage at the repair site at postoperative 2 and 4 weeks and less fatty infiltration at 4 weeks than the BMSCs-Exos group. In vitro, co-culture of BMSCs with LIPUS-BMSC-Exos could significantly promote BMSCs chondrogenic differentiation and inhibit adipogenic differentiation. Subsequently, qRT-PCR revealed significantly higher enrichment of chondrogenic miRNAs and less enrichment of adipogenic miRNAs in LIPUS-BMSC-Exos compared with BMSC-Exos. Moreover, we demonstrated that this chondrogenesis-inducing potential was primarily attributed to miR-140, one of the most abundant miRNAs in LIPUS-BMSC-Exos. Conclusion: LIPUS-preconditioned BMSC-Exos can effectively promote BTI fibrocartilage regeneration and ameliorate supraspinatus fatty infiltration by positive regulation of pro-chondrogenesis and anti-adipogenesis, which was primarily through delivering miR-140. The translational potential of this article: These findings propose an innovative "LIPUS combined Exosomes strategy" for rotator cuff healing which combines both physiotherapeutic and biotherapeutic advantages. This strategy possesses a good translational potential as a local injection of LIPUS preconditioned BMSC-derived Exos during operation can be not only efficient for promoting fibrocartilage regeneration and ameliorating rotator cuff fatty infiltration, but also time-saving, simple and convenient for patients.

17.
Research (Wash D C) ; 7: 0451, 2024.
Article in English | MEDLINE | ID: mdl-39193132

ABSTRACT

The potential of circular RNAs (circRNAs) as biomarkers and therapeutic targets is becoming increasingly evident, yet their roles in cardiac regeneration and myocardial renewal remain largely unexplored. Here, we investigated the function of circIGF1R and related mechanisms in cardiac regeneration. Through analysis of circRNA sequencing data from neonatal and adult cardiomyocytes, circRNAs associated with regeneration were identified. Our data showed that circIGF1R expression was high in neonatal hearts, decreased with postnatal maturation, and up-regulated after cardiac injury. The elevation was validated in patients diagnosed with acute myocardial infarction (MI) within 1 week. In human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and myocardial tissue from mice after apical resection and MI, we observed that circIGF1R overexpression enhanced cardiomyocyte proliferation, reduced apoptosis, and mitigated cardiac dysfunction and fibrosis, while circIGF1R knockdown impeded endogenous cardiac renewal. Mechanistically, we identified circIGF1R binding proteins through circRNA precipitation followed by mass spectrometry. RNA pull-down Western blot and RNA immunoprecipitation demonstrated that circIGF1R directly interacted with DDX5 and augmented its protein level by suppressing ubiquitin-dependent degradation. This subsequently triggered the ß-catenin signaling pathway, leading to the transcriptional activation of cyclin D1 and c-Myc. The roles of circIGF1R and DDX5 in cardiac regeneration were further substantiated through site-directed mutagenesis and rescue experiments. In conclusion, our study highlights the pivotal role of circIGF1R in facilitating heart regeneration and repair after ischemic insults. The circIGF1R/DDX5/ß-catenin axis emerges as a novel therapeutic target for enhancing myocardial repair after MI, offering promising avenues for the development of regenerative therapies.

18.
Mol Ther Methods Clin Dev ; 32(3): 101304, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39193315

ABSTRACT

The viral genome titer is a crucial indicator for the clinical dosing, manufacturing, and analytical testing of recombinant adeno-associated virus (rAAV) gene therapy products. Although quantitative PCR and digital PCR are the common methods used for quantifying the rAAV genome titer, they are limited by inadequate accuracy and robustness. The clustered regularly interspaced short palindromic repeat (CRISPR)-Cas12a biosensor is being increasingly used in virus detection; however, there is currently no report on its application in the titer determination of gene therapy products. In the present study, an amplification-free CRISPR-Cas12a assay was developed, optimized, and applied for rAAV genome titer determination. The assay demonstrated high precision and accuracy within the detection range of 4 × 109 and 1011 vg/mL. No significant difference was observed between the Cas12a and qPCR assay results (p < 0.05, t test). Moreover, Cas12a exhibited similar activity on both single-stranded and double-stranded DNA substrates. Based on this characteristic, the titers of positive-sense and negative-sense strands were determined separately, which revealed a significant difference between their titers for an in-house reference AAV5-IN. This study presents the inaugural report of a Cas12a assay developed for the titer determination and composition analysis of the rAAV genome.

19.
Ultrason Sonochem ; 110: 107043, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39186918

ABSTRACT

This study explored the potential of ultrasonic-assisted three-phase partitioning (UTPP) to simultaneously extract lipids, proteins, and polysaccharides from Idesia polycarpa Maxim (IPM) cake meal, a significant byproduct of oil extraction. The impact of variables such as inorganic salt type, solid-liquid ratio, salt concentration, pH, ultrasonic time, temperature, and volume of dimethyl carbonate was examined. Based on the single-factor tests and response surface methodology (RSM), optimal conditions were identified as 30 % ammonium citrate, a 1:26 solid-liquid ratio, pH 3, 31 min of ultrasonic time, 30 °C temperature, and 15 mL of dimethyl carbonate. These conditions achieved extraction rates of 8.10 % for lipids, 5.03 % for proteins, and 10.03 % for polysaccharides, with recovery rates of 91.62 %, 83.08 %, and 93.95 % respectively. Chemical analysis showed the lipid fraction rich in linoleic acid, and the protein fraction high in glutamic acid, aspartate, and serine. The polysaccharide fraction, mainly RG-I pectin with a molecular weight of 226.58 kDa, exhibited strong thermal stability and inhibitory effects on α-glucosidase and glycation, suggesting potential for functional food and dietary supplement applications. This highlights UTPP as a sustainable method for effectively utilizing valuable compounds from IPM cake meal, outperforming traditional extraction techniques.

20.
Environ Sci Technol ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39137267

ABSTRACT

Acute oral toxicity is currently not available for most polycyclic aromatic hydrocarbons (PAHs), especially their derivatives, because it is cost-prohibitive to experimentally determine all of them. Here, quantitative structure-activity relationship (QSAR) models using machine learning (ML) for predicting the toxicity of PAH derivatives were developed, based on oral toxicity data points of 788 individual substances of rats. Both the individual ML algorithm gradient boosting regression trees (GBRT) and the stacking ML algorithm (extreme gradient boosting + GBRT + random forest regression) provided the best prediction results with satisfactory determination coefficients for both cross-validation and the test set. It was found that those PAH derivatives with fewer polar hydrogens, more large-sized atoms, more branches, and lower polarizability have higher toxicity. Software based on the optimal ML-QSAR model was successfully developed to expand the application potential of the developed model, obtaining reliable prediction of pLD50 values and reference doses for 6893 external PAH derivatives. Among these chemicals, 472 were identified as moderately or highly toxic; 10 out of them had clear environment detection or use records. The findings provide valuable insights into the toxicity of PAHs and their derivatives, offering a standard platform for effectively evaluating chemical toxicity using ML-QSAR models.

SELECTION OF CITATIONS
SEARCH DETAIL