Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters








Database
Language
Publication year range
1.
Phys Rev Lett ; 131(23): 236001, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38134793

ABSTRACT

We report on measurements of the in-plane magnetic penetration depth (λ_{ab}) in single crystals of Sr_{2}RuO_{4} down to ≃0.015 K by means of muon-spin rotation-relaxation. The linear temperature dependence of λ_{ab}^{-2} for T≲0.7 K suggests the presence of nodes in the superconducting gap. This statement is further substantiated by observation of the Volovik effect, i.e., the reduction of λ_{ab}^{-2} as a function of the applied magnetic field. The experimental zero-field and zero-temperature value of λ_{ab}=124(3) nm agrees with λ_{ab}≃130 nm, calculated based on results of electronic structure measurements reported in A. Tamai et al. [High-resolution photoemission on Sr_{2}RuO_{4} reveals correlation-enhanced effective spin-orbit coupling and dominantly local self-energies, Phys. Rev. X 9, 021048 (2019)PRXHAE2160-330810.1103/PhysRevX.9.021048]. Our analysis reveals that a simple nodal superconducting energy gap, described by the lowest possible harmonic of a gap function, does not capture the dependence of λ_{ab}^{-2} on T, so the higher angular harmonics of the energy gap function need to be introduced.

2.
Nat Commun ; 14(1): 6734, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37872158

ABSTRACT

Materials that break multiple symmetries allow the formation of four-fermion condensates above the superconducting critical temperature (Tc). Such states can be stabilized by phase fluctuations. Recently, a fermionic quadrupling condensate that breaks the Z2 time-reversal symmetry was reported in Ba1-xKxFe2As2. A phase transition to the new state of matter should be accompanied by a specific heat anomaly at the critical temperature where Z2 time-reversal symmetry is broken ([Formula: see text]). Here, we report on detecting two anomalies in the specific heat of Ba1-xKxFe2As2 at zero magnetic field. The anomaly at the higher temperature is accompanied by the appearance of a spontaneous Nernst effect, indicating the breakdown of Z2 symmetry. The second anomaly at the lower temperature coincides with the transition to a zero-resistance state, indicating the onset of superconductivity. Our data provide the first example of the appearance of a specific heat anomaly above the superconducting phase transition associated with the broken time-reversal symmetry due to the formation of the novel fermion order.

3.
Materials (Basel) ; 15(15)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35955286

ABSTRACT

We report the local structural and superconducting properties of undoped and Ag-doped YBa2Cu3O6+x (YBCO) films with a thickness of up to 1 µm prepared by pulsed laser deposition on SrTiO3 (STO) single crystals and on ion-beam-assisted deposition (IBAD) and rolling-assisted biaxially textured substrate (RABiTS)-based metal templates. X-ray diffraction demonstrates the high crystalline quality of the films on both single crystalline substrates and metal-based templates, respectively. Although there was only a slight decrease in Tc of up to 1.5 K for the Ag-doped YBCO films on all substrates, we found significant changes in their transport characteristics. The effect of the silver doping mainly depended on the concentration of silver, the type of substrate, and the temperature and magnetic field. In general, the greatest improvement in Jc over a wide range of magnetic fields and temperatures was observed for the 5%Ag-doped YBCO films on STO substrates, showing a significant increase compared to undoped films. Furthermore, a slight Jc improvement was observed for the 2%Ag-doped YBCO films on the RABiTS templates at temperatures below 65 K, whereas Jc decreased for the Ag-doped films on IBAD-MgO-based templates compared to undoped YBCO films. Using detailed electron microscopy studies, small changes in the local microstructure of the Ag-doped YBCO films were revealed; however, no clear correlation was found with the transport properties of the films.

4.
Materials (Basel) ; 13(3)2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32023853

ABSTRACT

We performed a detailed structural, magnetotransport, and superconducting analysis of thin epitaxial Ba(Fe1-xNix)2As2 films with Ni doping of x = 0.05 and 0.08, as prepared by pulsed laser deposition. X-ray diffraction studies demonstrate the high crystalline perfection of the films, which have a similar quality to single crystals. Furthermore, magnetotransport measurements of the films were performed in magnetic fields up to 9 T. The results we used to estimate the density of electronic states at the Fermi level, the coefficient of electronic heat capacity, and other electronic parameters for this compound, in their dependence on the dopant concentration within the framework of the Ginzburg-Landau-Abrikosov-Gorkov theory. The comparison of the determined parameters with measurement data on comparable Ba(Fe1-xNix)2As2 single crystals shows good agreement, which confirms the high quality of the obtained films.

SELECTION OF CITATIONS
SEARCH DETAIL