Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Iran J Med Sci ; 49(9): 559-572, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39371380

ABSTRACT

Background: Primary biliary cholangitis (PBC) is a condition affecting the liver and immune system. In this study, the impact of autologous bone marrow-derived mononuclear cell (BM-MNC) transplantation on PBC patients was investigated. Methods: Sixteen eligible PBC patients participated at the National Scientific Medical Center in Astana, Kazakhstan, between 2017 and 2022, and BM-MNCs were harvested from their anterior iliac crest. After isolating and cultivating the BM-MNCs, they were infused back into the patient's peripheral veins. Changes in BM-MNC and peripheral blood mononuclear cell (PB-MNC) phenotypes were assessed before and after a 24-hour cultivation period and 72 hours post-transplantation. We monitored liver function parameters over 6-month intervals and conducted flow cytometry analysis to assess CD markers on BM-MNCs before and after cultivation and PB-MNCs before and after transplantation. Statistical analysis included the Friedman test for liver parameters and the Wilcoxon signed-rank test for BM-MNC and PB-MNC comparisons. Results: Our findings revealed significant reductions in liver function tests after multiple transplantations. Flow cytometry analysis before and after a 24-hour culture and autologous BM-MNC infusion revealed the expansion of specific cell populations, with significant increases in CD3+, CD4+, CD16+, CD20+, CD25+, CD34+, CD105+, CD73+, СD117+, and CD34+populations, while CD4+25+, CD34+105+, and CD4+FOXP3+ populations decreased. Interestingly, a contradictory finding was observed with a decrease in bone marrow CD34+105+ cell lines (P=0.03) alongside an increase in peripheral CD34+105+ population (P=0.03). Conclusion: In summary, our study shows that BM-MNC transplantation in PBC patients leads to changes in immune cell populations and liver function. These findings suggest potential therapeutic applications of BM-MNC transplantation in managing PBC and offer insights into the dynamics of immune cells associated with this treatment approach.


Subject(s)
Leukocytes, Mononuclear , Liver Cirrhosis, Biliary , Transplantation, Autologous , Humans , Female , Middle Aged , Liver Cirrhosis, Biliary/physiopathology , Liver Cirrhosis, Biliary/therapy , Transplantation, Autologous/methods , Transplantation, Autologous/statistics & numerical data , Transplantation, Autologous/standards , Male , Adult , Phenotype , Bone Marrow Cells/physiology , Bone Marrow Transplantation/methods , Bone Marrow Transplantation/statistics & numerical data , Bone Marrow Transplantation/standards
3.
J Chem Phys ; 161(11)2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39282837

ABSTRACT

We apply the analytically solvable model of two electrons in two orbitals to diradical molecules, characterized by two unpaired electrons. The effect of doubly occupied and empty orbitals is taken into account by means of random phase approximation (RPA). We show that in the static limit, the direct RPA leads to the renormalization of the parameters of the two-orbital model. We test our model by comparing its predictions for singlet-triplet splitting with the results of several multi-reference methods for a set of thirteen molecules. We find that for this set, the static RPA results are close to those of the NEVPT2 method with two orbitals and two electrons in the active space.

5.
Cell Biochem Biophys ; 82(3): 2827-2835, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38992260

ABSTRACT

In recent years, Sunset Yellow (SY) has been widely used as a food additive, sparking debates about its potential toxicity. This research aims to investigate SY's effects at both the molecular and histopathological levels, along with the protective benefits of Coenzyme Q10 (CoQ10) supplementation in male rat testes. Forty-two male Sprague-Dawley rats were randomly divided into six groups (n = 7) and given daily oral gavages for six weeks. The groups included: a low dose of Sunset Yellow (2.5 mg/kg/day), a high dose of Sunset Yellow (70 mg/kg/day), CoQ10 (10 mg/kg/day), CoQ10 with the low dose of Sunset Yellow, CoQ10 with the high dose of Sunset Yellow, and deionized water as a control. After anesthesia, the rats' testes were removed for molecular and histological analysis. The findings showed a dose-dependent rise in the expression of oxidative stress genes (Sod, Gpx, and Cata) and a notable decrease in the expression of the steroidogenic acute regulatory (Star) gene (P value < 0.05) with increasing SY doses. Histological results supported these outcomes. Additionally, there was no significant distinction between rats treated with CoQ10 along with low doses of Sunset Yellow (CoQ10+LD) and control rats given low doses of Sunset Yellow (SY-LD). Conclusions: This study illustrates that SY, as an artificial food dye, has harmful effects on the male reproductive system, while the utilization of CoQ10 can alleviate the negative impacts of SY exposure.


Subject(s)
Oxidative Stress , Rats, Sprague-Dawley , Testis , Ubiquinone , Animals , Male , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology , Testis/drug effects , Testis/metabolism , Rats , Oxidative Stress/drug effects , Phosphoproteins/metabolism , Phosphoproteins/genetics , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Glutathione Peroxidase/metabolism , Glutathione Peroxidase/genetics , Catalase/metabolism , Catalase/genetics , Azo Compounds
6.
Int J Fertil Steril ; 18(Suppl 1): 60-70, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39033372

ABSTRACT

BACKGROUND: In this phase I clinical trial, our primary objective was to develop an innovative therapeutic approach utilizing autologous bone marrow-derived mesenchymal stromal/stem cells (BM-MSCs) for the treatment of nonobstructive azoospermia (NOA). Additionally, we aimed to assess the feasibility and safety of this approach. MATERIALS AND METHODS: We recruited 80 participants in this non-randomized, open-label clinical trial, including patients undergoing NOA treatment using autologous BM-MSCs (n=40) and those receiving hormone therapy as a control group (n=40). Detailed participant characteristics, such as age, baseline hormonal profiles, etiology of NOA, and medical history, were thoroughly documented. Autotransplantation of BM-MSCs into the testicular network was achieved using microsurgical testicular sperm extraction (microTESE). Semen analysis and hormonal assessments were performed both before and six months after treatment. Additionally, we conducted an in-silico analysis to explore potential protein-protein interactions between exosomes secreted from BM-MSCs and receptors present in human seminiferous tubule cells. RESULTS: Our results revealed significant improvements following treatment, including increased testosterone and inhibin B levels, elevated sperm concentration, and reduced levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and prolactin. Notably, in nine patients (22.5%) previously diagnosed with secondary infertility and exhibiting azoospermia before treatment, the proposed approach yielded successful outcomes, as indicated by hormonal profile changes over six months. Importantly, these improvements were achieved without complications. Additionally, our in-silico analysis identified potential binding interactions between the protein content of BM-MSC-derived exosomes and receptors integral to spermatogenesis. CONCLUSION: Autotransplantation of BM-MSCs into the testicular network using microTESE in NOA patients led to the regeneration of seminiferous tubules and the regulation of hormonal profiles governing spermatogenesis. Our findings support the safety and effectiveness of autologous BM-MSCs as a promising treatment modality for NOA, with a particular focus on the achieved outcomes in patients with secondary infertility (registration number: IRCT20190519043634N1).

7.
Bioimpacts ; 13(6): 495-504, 2023.
Article in English | MEDLINE | ID: mdl-38022384

ABSTRACT

Introduction: Premature ovarian insufficiency (POI) is a challenging issue in terms of reproduction biology. In this study, therapeutic properties of bone marrow CD146+ mesenchymal stem cells (MSCs) and CD144+ endothelial cells (ECs) were separately investigated in rats with POI. Methods: POI rats were classified into control POI, POI + CD146+ MSCs, and POI + CD144+ ECs groups. Enriched CD146+ MSCs and CD144+ ECs were directly injected into ovarian tissue (15 × 104 cells/10 µL) in relevant groups. After 4 weeks, follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2) levels were measured in blood samples. Ovarian tissues were collected and subjected to Hematoxylin-Eosin and Masson's trichrome staining. The expression of angp-2, vegfr-2, smad-2, -4, -6, and tgf-ß1 was studied using qRT-PCR analysis. Histopathological examination indicated an increased pattern of atretic follicles in the POI group related to the control rats (P<0.0001). Results: Data indicated that injection of POI + CD146+ MSCs and CD144+ ECs in POI rats reduced atretic follicles and increased the number of normal follicles (P<0.01). Along with these changes, the content of blue-colored collagen fibers was diminished after cell transplantation. Besides, cell transplantation in POI rats had the potential to reduce increased FSH, and LH levels (P<0.05). In contrast, E2 content was increased in POI + CD146+ MSCs and POI + CD144+ ECs groups compared to control POI rats, indicating restoration of follicular function. CD144+ (smad-2, and -4) and CD146+ (smad-6) cells altered the activity of genes belonging TGF-ß signaling pathway. Unlike POI + CD146+ MSCs, aberrant angiogenesis properties were significantly down-regulated in POI + CD144+ ECs related to the control POI group (P<0.05). Conclusion: The transplantation of bone marrow CD146+ and CD144+ cells can lead to the restoration of ovarian tissue function in POI rats via modulating different mechanisms associated with angiogenesis and fibrosis.

8.
Antibiotics (Basel) ; 12(9)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37760709

ABSTRACT

Antimicrobial resistance (AMR) is a pressing global concern, posing significant challenges to the effective treatment of infections, including pneumonia. This bibliometric analysis aims to investigate the research output on AMR among pneumonia pathogens from 2013 to 2023. Data were extracted from the Web of Science Core Collection (WOS-CC) using an inclusive search strategy. The analysis included 152 relevant studies published in 99 different sources, involving 988 authors and yielding an average of 16.33 citations per document over the past decade. The findings reveal a notable increase in research on AMR among pneumonia pathogens, indicating a growing awareness of this critical issue. Collaborative studies were prevalent, with the majority of authors engaging in joint research efforts. Bradford's Law identified twelve core journals that were instrumental in disseminating research in this field, with "Medicine" emerging as the most prolific journal. The USA and China emerged as the leading contributors, while Germany displayed a strong inclination towards collaborative research. Intermountain Medical Center, Saitama Medical University, and Udice-French Research Universities were the most productive institutions, and Yayan J. and Rasche K. were the top authors. Furthermore, the analysis identified commonly encountered microorganisms such as Acinetobacter baumanii and Klebsiella pneumoniae in the context of AMR. Time-based analysis of keywords highlighted the significance of terms like "community-acquired pneumonia" and "ventilator-associated pneumonia". Overall, this comprehensive study sheds light on the global research landscape of AMR among pneumonia pathogens. The insights gained from this analysis are essential for guiding future research priorities and collaborative efforts to combat AMR effectively and improve treatment outcomes for pneumonia and related infections. As the frequency of reports concerning resistance among pneumonia pathogens, notably A. baumannii and K. pneumoniae, continues to rise, there is an immediate requirement for pharmaceutical manufacturers and healthcare providers to respond proactively and ready themselves for the forthcoming implications of this matter. It also underscores the importance of knowledge dissemination and evidence-based interventions to address this growing public health challenge. However, the study acknowledges the limitations associated with using a single publication database and encourages the inclusion of data from other sources in future research.

9.
Tissue Cell ; 85: 102215, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37716177

ABSTRACT

Three-dimensional nanofiber scaffolds offer a promising method for simulating in vivo conditions within the laboratory. This study aims to investigate the influence of a bilayer amniochorionic membrane/nanofibrous fibroin scaffold on the differentiation of human menstrual blood mesenchymal stromal/stem cells (MenSCs) into female germ cells. MenSCs were isolated and assigned to four culture groups: (i) MenSCs co-cultured with granulosa cells (GCs) using the scaffold (3D-T group), (ii) MenSCs using the scaffold alone (3D-C group), (iii) MenSCs co-cultured only with GCs (2D-T group), and (iv) MenSCs without co-culture or scaffold (2D-C group). Both MenSCs and GCs were independently cultured for two weeks before co-culturing was initiated. Flow cytometry was employed to characterize MenSCs based on positive markers (CD73, CD90, and CD105) and negative markers (CD45 and CD133). Additionally, flow cytometry and immunocytochemistry were used to characterize the GCs. Differentiated MenSCs were analyzed using real-time PCR and immunostaining. The real-time PCR results demonstrated significantly higher levels of VASA expression in the 3D-T group compared to the 3D-C, 2D-T, and 2D-C groups. Similarly, the SCP3 mRNA level in the 3D-T group was notably elevated compared to the 3D-C, 2D-T, and 2D-C groups. Moreover, the expression of GDF9 was significantly higher in the 3D-T group when compared to the 3D-C, 2D-T, and 2D-C groups. Immunostaining results revealed a lack of signal for VASA, SCP3, or GDF9 markers in the 2D-T group, while some cells in the 3D-T group exhibited positive staining for all these proteins. These findings suggest that the combination of a bilayer amniochorionic membrane/nanofibrous fibroin scaffold with co-culturing GCs facilitates the differentiation of MenSCs into female germ cells.


Subject(s)
Fibroins , Mesenchymal Stem Cells , Female , Humans , Fibroins/chemistry , Tissue Scaffolds/chemistry , Amnion , Cell Differentiation , Germ Cells , Cells, Cultured
11.
Mar Drugs ; 21(5)2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37233461

ABSTRACT

Sea cucumber extracts and their bioactive compounds have the potential for stem cell proliferation induction and for their beneficial therapeutic properties. In this study, human umbilical cord mesenchymal stromal/stem cells (hUC-MSCs) were exposed to an aqueous extract of Holothuria parva body walls. Proliferative molecules were detected using gas chromatography-mass spectrometry (GC-MS) analysis in an aqueous extract of H. parva. The aqueous extract concentrations of 5, 10, 20, 40, and 80 µg/mL and 10 and 20 ng/mL of human epidermal growth factor (EGF) as positive controls were treated on hUC-MSCs. MTT, cell count, viability, and cell cycle assays were performed. Using Western blot analysis, the effects of extracts of H. parva and EGF on cell proliferation markers were detected. Computational modeling was done to detect effective proliferative compounds in the aqueous extract of H. parva. A MTT assay showed that the 10, 20, and 40 µg/mL aqueous extract of H. parva had a proliferative effect on hUC-MSCs. The cell count, which was treated with a 20 µg/mL concentration, increased faster and higher than the control group (p < 0.05). This concentration of the extract did not have a significant effect on hUC-MSCs' viability. The cell cycle assay of hUC-MSCs showed that the percentage of cells in the G2 stage of the extract was biologically higher than the control group. Expression of cyclin D1, cyclin D3, cyclin E, HIF-1α, and TERT was increased compared with the control group. Moreover, expression of p21 and PCNA decreased after treating hUC-MSCs with the extract. However, CDC-2/cdk-1 and ERK1/2 had almost the same expression as the control group. The expression of CDK-4 and CDK-6 decreased after treatment. Between the detected compounds, 1-methyl-4-(1-methyl phenyl)-benzene showed better affinity to CDK-4 and p21 than tetradecanoic acid. The H. parva aqueous extract showed proliferative potential on hUC-MSCs.


Subject(s)
Holothuria , Sea Cucumbers , Animals , Humans , Epidermal Growth Factor/pharmacology , Cell Differentiation , Umbilical Cord , Stem Cells
12.
Mar Drugs ; 21(5)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37233477

ABSTRACT

Lung cancer is one of the most lethal malignancies in the world. However, current curative approaches for treating this type of cancer have some weaknesses. Therefore, scientists are attempting to discover new anti-lung cancer agents. Sea cucumber is a marine-derived source for discovering biologically active compounds with anti-lung cancer properties. To explore the anti-lung cancer properties of sea cucumber, we analyzed surveys using VOSviewer software and identified the most frequently used keywords. We then searched the Google Scholar database for compounds with anti-lung cancer properties within that keyword family. Finally, we used AutoDock 4 to identify the compounds with the highest affinity for apoptotic receptors in lung cancer cells. The results showed that triterpene glucosides were the most frequently identified compounds in studies examining the anti-cancer properties of sea cucumbers. Intercedenside C, Scabraside A, and Scabraside B were the three triterpene glycosides with the highest affinity for apoptotic receptors in lung cancer cells. To the best of our knowledge, this is the first time that anti-lung cancer properties of sea cucumber-derived compounds have been examined in in silico conditions. Ultimately, these three components displayed anti-lung cancer properties in in silico conditions and may be used for the manufacture of anti-lung cancer agents in the near future.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Sea Cucumbers , Triterpenes , Animals , Humans , Lung Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Glycosides , Triterpenes/pharmacology , Triterpenes/therapeutic use , Bibliometrics , Molecular Structure
13.
Life (Basel) ; 13(2)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36836926

ABSTRACT

More research is being conducted on myocardial cell treatments utilizing stem cell lines that can develop into cardiomyocytes. All of the forms of cardiac illnesses have shown to be quite amenable to treatments using embryonic (ESCs) and induced pluripotent stem cells (iPSCs). In the present study, we reviewed the differentiation of these cell types into cardiomyocytes from an epigenetic standpoint. We also provided a miRNA network that is devoted to the epigenetic commitment of stem cells toward cardiomyocyte cells and related diseases, such as congenital heart defects, comprehensively. Histone acetylation, methylation, DNA alterations, N6-methyladenosine (m6a) RNA methylation, and cardiac mitochondrial mutations are explored as potential tools for precise stem cell differentiation.

14.
Toxicol Rep ; 10: 104-116, 2023.
Article in English | MEDLINE | ID: mdl-36685271

ABSTRACT

Despite the widespread use of silver nanoparticles (NPs), these NPs can accumulate and have toxic effects on various organs. However, the effects of silver nanostructures (Ag-NS) with alginate coating on the male reproductive system have not been studied. Therefore, this study aimed to investigate the impacts of this NS on sperm function and testicular structure. After the synthesis and characterization of Ag-NS, the animals were divided into five groups (n = 8), including one control group, two sham groups (received 1.5 mg/kg/day alginate solution for 14 and 35 days), and two treatment groups (received Ag-NS at the same dose and time). Following injections, sperm parameters, apoptosis, and autophagy were analyzed by the TUNEL assay and measurement of the mRNA expression of Bax, Bcl-2, caspase-3, LC3, and Beclin-1. Fertilization rate was assessed by in vitro fertilization (IVF), and testicular structure was analyzed using the TUNEL assay and hematoxylin and eosin (H&E) staining. The results showed that the NS was rod-shaped, had a size of about 60 nm, and could reduce sperm function and fertility. Gene expression results demonstrated an increase in the apoptotic markers and a decrease in autophagy markers, indicating apoptotic cell death. Moreover, Ag-NS invaded testicular tissues, especially in the chronic phase (35 days), resulting in tissue alteration and epithelium disintegration. The results suggest that sperm parameters and fertility were affected. In addition, NS has negative influences on testicular tissues, causing infertility in men exposed to these NS.

15.
BMC Res Notes ; 15(1): 346, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36348463

ABSTRACT

OBJECTIVE: Recently, the decellularization technique is introduced as one of the tissue engineering procedures for the treatment of various deficiencies. Here, we aimed to assess the dynamic activity of CCs and HUVECs within decellularized bovine ovarian tissue transplanted subcutaneously in rats. Ovarian tissue was decellularized using a cocktail consisting of different chemicals, and the efficiency of decellularization was assessed using hematoxylin-eosin and DAPI staining. The cell survival was evaluated using an LDH leakage assay. Thereafter, decellularized samples were recellularized using HUVECs and CCs, encapsulated inside alginate (1.2%)-gelatin, (1%) hydrogel, and transplanted subcutaneously to rats. The existence of CD31- and estrogen-positive cells was assessed using immunohistochemistry staining. RESULTS: Bright-field imaging and DAPI staining revealed the lack of nuclei with naive matrix structure in ovarian tissue subjected to decellularization protocol. SEM imaging revealed a normal matrix in decellularized ovaries. LDH assay showed a lack of cytotoxicity for CCs after 7-days compared to the control group. Immunohistochemistry staining showed both CD31- and estrogen-positive cells in CCs + HUVECs compared to the CCs group. CD31 cells appeared with flattened morphology aligned with matrix fibers. The existence of estrogen and CD31 positive cells showed the efficiency of decellularized ovarian tissue to restore cellular function and activity.


Subject(s)
Endothelial Cells , Extracellular Matrix , Female , Rats , Cattle , Animals , Tissue Engineering/methods , Ovary , Estrogens
16.
BMC Complement Med Ther ; 22(1): 290, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36352380

ABSTRACT

BACKGROUND: The restorative effect of classical music was assessed on the cyclophosphamide-induced animal model of premature ovarian failure (POF). METHODS: Mozart's piano classical music (K.448) was used for up to 4 and 8 weeks. Rats were exposed to music 6 h every day using a stereo system with a volume of 65-70 dB. Sera and ovarian tissue samples were collected for the evaluation of FSH, LH, and E2 and histopathological examination. At the same time points, samples were taken from the hypothalamus and hippocampus to monitor the expression of Ntrk2, Crh, and Pomc using real-time PCR. Mating trial was performed to evaluate the fertility status of POF rats. RESULTS: Histopathological examination revealed a significant increase (p < 0.05) in the numbers of morphologically normal follicles at all the developmental stages in POF rats after music therapy compared to the POF group (p < 0.05). Music therapy decreased FSH and LH levels to near-to-normal levels conidied with elevation of E2 (p < 0.05). Ntrk2, Crh, and Pomc expressions were down-regulated in POF rats. Music therapy increasaed the expression of Ntrk2 in the hypothalamus of POF rats (p < 0.05). In contrast, Crh and Pomc failed to reach the detection limit before intervention and four weeks after the intervention however, these genes were expressed eight weeks after music therapy. Fertility status was increased (p < 0.05) in terms of litter size in POF rats after being exposed to music compared to the non-treated POF control group (p < 0.05). CONCLUSION: Results showed that music can exert therapeutic effects on POF rats via the alteration of sex-related hormones.


Subject(s)
Music , Primary Ovarian Insufficiency , Humans , Female , Rats , Animals , Primary Ovarian Insufficiency/therapy , Primary Ovarian Insufficiency/chemically induced , Primary Ovarian Insufficiency/pathology , Pro-Opiomelanocortin/therapeutic use , Fertility , Follicle Stimulating Hormone
17.
Biomater Res ; 26(1): 31, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35794665

ABSTRACT

Bioactive glasses are a group of bioceramic materials that have extensive clinical applications. Their properties such as high biocompatibility, antimicrobial features, and bioactivity in the internal environment of the body have made them useful biomaterials in various fields of medicine and dentistry. There is a great variation in the main composition of these glasses and some of them whose medical usage has been approved by the US Food and Drug Administration (FDA) are called Bioglass. Bioactive glasses have appropriate biocompatibility with the body and they are similar to bone hydroxyapatite in terms of calcium and phosphate contents. Bioactive glasses are applied in different branches of dentistry like periodontics, orthodontics, endodontics, oral and maxillofacial surgery, esthetic and restorative dentistry. Also, some dental and oral care products have bioactive glasses in their compositions. Bioactive glasses have been used as dental implants in the human body in order to repair and replace damaged bones. Other applications of bioactive glasses in dentistry include their usage in periodontal disease, root canal treatments, maxillofacial surgeries, dental restorations, air abrasions, dental adhesives, enamel remineralization, and dentin hypersensitivity. Since the use of bioactive glasses in dentistry is widespread, there is a need to find methods and extensive resources to supply the required bioactive glasses. Various techniques have been identified for the production of bioactive glasses, and marine sponges have recently been considered as a rich source of it. Marine sponges are widely available and many species have been identified around the world, including the Persian Gulf. Marine sponges, as the simplest group of animals, produce different bioactive compounds that are used in a wide range of medical sciences. Numerous studies have shown the anti-tumor, anti-viral, anti-inflammatory, and antibiotic effects of these compounds. Furthermore, some species of marine sponges due to the mineral contents of their structural skeletons, which are made of biosilica, have been used for extracting bioactive glasses.

18.
Stem Cells Int ; 2021: 1634782, 2021.
Article in English | MEDLINE | ID: mdl-34745268

ABSTRACT

Mesenchymal stromal cells (MSCs) are a heterogeneous population of adult stem cells, which are multipotent and possess the ability to differentiate/transdifferentiate into mesodermal and nonmesodermal cell lineages. MSCs display broad immunomodulatory properties since they are capable of secreting growth factors and chemotactic cytokines. Safety, accessibility, and isolation from patients without ethical concern make MSCs valuable sources for cell therapy approaches in autoimmune, inflammatory, and degenerative diseases. Many studies have been conducted on the application of MSCs as a new therapy, but it seems that a low percentage of them is related to clinical trials, especially completed clinical trials. Considering the importance of clinical trials to develop this type of therapy as a new treatment, the current paper is aimed at describing characteristics of MSCs and reviewing relevant clinical studies registered on the NIH database during 2016-2020 to discuss recent advances on MSC-based therapeutic approaches being used in different diseases.

19.
Cell Tissue Res ; 386(2): 365-378, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34424397

ABSTRACT

An automatic decellularization device was developed to perfuse and decellularize male rats' kidneys using both sodium lauryl ether sulfate (SLES) and sodium dodecyl sulfate (SDS) and to compare their efficacy in kidney decellularization and post-transplantation angiogenesis. Kidneys were perfused with either 1% SDS solution for 4 h or 1% SLES solution for 6 h. The decellularized scaffolds were stained with hematoxylin and eosin, periodic acid Schiff, Masson's trichrome, and Alcian blue to determine cell removal and glycogen, collagen, and glycosaminoglycan contents, respectively. Moreover, scanning electron microscopy was performed to evaluate the cell removal and preservation of microarchitecture of both SDS and SLES scaffolds. Additionally, DNA quantification assay was applied for all groups in order to measure residual DNA in the scaffolds and normal kidney. In order to demonstrate biocompatibility of the decellularized scaffolds, human umbilical cord mesenchymal stromal/stem cells (hUC-MSCs) were seeded on the scaffolds. In addition, the allotransplantation was performed in back muscle and angiogenesis was evaluated. Complete cell removal in both SLES and SDS groups was observed in scanning electron microscopy and DNA quantification assays. Moreover, the extracellular matrix (ECM) architecture of rat kidney in the SLES group was significantly preserved better than the SDS group. The hUC-MSCs were successfully migrated from the cell culture plate surface into the SDS and SLES decellularized scaffolds. The formation of blood vessels was observed in the kidney in both SLES and SDS decellularized kidneys. The better preservation of ECM than SDS introduces SLES as the solvent of choice for kidney decellularization.


Subject(s)
Decellularized Extracellular Matrix/chemistry , Kidney/chemistry , Polyethylene Glycols/chemistry , Sodium Dodecyl Sulfate/chemistry , Tissue Scaffolds/chemistry , Animals , Kidney/cytology , Kidney/ultrastructure , Rats , Rats, Sprague-Dawley , Stem Cell Transplantation , Stem Cells/cytology , Tissue Engineering
20.
Metab Brain Dis ; 36(7): 2179, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34146217

ABSTRACT

A Correction to this paper has been published: https://doi.org/10.1007/s11011-021-00779-4.

SELECTION OF CITATIONS
SEARCH DETAIL