Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters








Publication year range
1.
Res Sq ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38645113

ABSTRACT

DNA methylation at cytosine bases of eukaryotic DNA (5-methylcytosine, 5mC) is a heritable epigenetic mark that can regulate gene expression in health and disease. Enzymes that metabolize 5mC have been well-characterized, yet the discovery of endogenously produced signaling molecules that regulate DNA methyl-modifying machinery have not been described. Herein, we report that the free radical signaling molecule nitric oxide (NO) can directly inhibit the Fe(II)/2-OG-dependent DNA demethylases ten-eleven translocation (TET) and human AlkB homolog 2 (ALKBH2). Physiologic NO concentrations reversibly inhibited TET and ALKBH2 demethylase activity by binding to the mononuclear non-heme iron atom which formed a dinitrosyliron complex (DNIC) preventing cosubstrates (2-OG and O2) from binding. In cancer cells treated with exogenous NO, or cells endogenously synthesizing NO, there was a global increase in 5mC and 5-hydroxymethylcytosine (5hmC) in DNA, the substrates for TET, that could not be attributed to increased DNA methyltransferase activity. 5mC was also elevated in NO-producing cell-line-derived mouse xenograft and patient-derived xenograft tumors. Genome-wide DNA methylome analysis of cells chronically treated with NO (10 days) demonstrated enrichment of 5mC and 5hmC at gene-regulatory loci which correlated to changes in the expression of NO-regulated tumor-associated genes. Regulation of DNA methylation is distinctly different from canonical NO signaling and represents a novel epigenetic role for NO.

3.
Front Oncol ; 13: 1127645, 2023.
Article in English | MEDLINE | ID: mdl-37637066

ABSTRACT

Background: Glioblastomas (GBM) are rapidly progressive, nearly uniformly fatal brain tumors. Proteomic analysis represents an opportunity for noninvasive GBM classification and biological understanding of treatment response. Purpose: We analyzed differential proteomic expression pre vs. post completion of concurrent chemoirradiation (CRT) in patient serum samples to explore proteomic alterations and classify GBM by integrating clinical and proteomic parameters. Materials and methods: 82 patients with GBM were clinically annotated and serum samples obtained pre- and post-CRT. Serum samples were then screened using the aptamer-based SOMAScan® proteomic assay. Significant traits from uni- and multivariate Cox models for overall survival (OS) were designated independent prognostic factors and principal component analysis (PCA) was carried out. Differential expression of protein signals was calculated using paired t-tests, with KOBAS used to identify associated KEGG pathways. GSEA pre-ranked analysis was employed on the overall list of differentially expressed proteins (DEPs) against the MSigDB Hallmark, GO Biological Process, and Reactome databases with weighted gene correlation network analysis (WGCNA) and Enrichr used to validate pathway hits internally. Results: 3 clinical clusters of patients with differential survival were identified. 389 significantly DEPs pre vs. post-treatment were identified, including 284 upregulated and 105 downregulated, representing several pathways relevant to cancer metabolism and progression. The lowest survival group (median OS 13.2 months) was associated with DEPs affiliated with proliferative pathways and exhibiting distinct oppositional response including with respect to radiation therapy related pathways, as compared to better-performing groups (intermediate, median OS 22.4 months; highest, median OS 28.7 months). Opposite signaling patterns across multiple analyses in several pathways (notably fatty acid metabolism, NOTCH, TNFα via NF-κB, Myc target V1 signaling, UV response, unfolded protein response, peroxisome, and interferon response) were distinct between clinical survival groups and supported by WGCNA. 23 proteins were statistically signficant for OS with 5 (NETO2, CST7, SEMA6D, CBLN4, NPS) supported by KM. Conclusion: Distinct proteomic alterations with hallmarks of cancer, including progression, resistance, stemness, and invasion, were identified in serum samples obtained from GBM patients pre vs. post CRT and corresponded with clinical survival. The proteome can potentially be employed for glioma classification and biological interrogation of cancer pathways.

4.
BMC Bioinformatics ; 24(1): 244, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37296383

ABSTRACT

BACKGROUND: High throughput experiments in cancer and other areas of genomic research identify large numbers of sequence variants that need to be evaluated for phenotypic impact. While many tools exist to score the likely impact of single nucleotide polymorphisms (SNPs) based on sequence alone, the three-dimensional structural environment is essential for understanding the biological impact of a nonsynonymous mutation. RESULTS: We present a program, 3DVizSNP, that enables the rapid visualization of nonsynonymous missense mutations extracted from a variant caller format file using the web-based iCn3D visualization platform. The program, written in Python, leverages REST APIs and can be run locally without installing any other software or databases, or from a webserver hosted by the National Cancer Institute. It automatically selects the appropriate experimental structure from the Protein Data Bank, if available, or the predicted structure from the AlphaFold database, enabling users to rapidly screen SNPs based on their local structural environment. 3DVizSNP leverages iCn3D annotations and its structural analysis functions to assess changes in structural contacts associated with mutations. CONCLUSIONS: This tool enables researchers to efficiently make use of 3D structural information to prioritize mutations for further computational and experimental impact assessment. The program is available as a webserver at https://analysistools.cancer.gov/3dvizsnp or as a standalone python program at https://github.com/CBIIT-CGBB/3DVizSNP .


Subject(s)
Computational Biology , Mutation, Missense , Computational Biology/methods , Genomics/methods , Software , Mutation
5.
Front Neurosci ; 16: 903881, 2022.
Article in English | MEDLINE | ID: mdl-35801179

ABSTRACT

Neuronal programming by forced expression of transcription factors (TFs) holds promise for clinical applications of regenerative medicine. However, the mechanisms by which TFs coordinate their activities on the genome and control distinct neuronal fates remain obscure. Using direct neuronal programming of embryonic stem cells, we dissected the contribution of a series of TFs to specific neuronal regulatory programs. We deconstructed the Ascl1-Lmx1b-Foxa2-Pet1 TF combination that has been shown to generate serotonergic neurons and found that stepwise addition of TFs to Ascl1 canalizes the neuronal fate into a diffuse monoaminergic fate. The addition of pioneer factor Foxa2 represses Phox2b to induce serotonergic fate, similar to in vivo regulatory networks. Foxa2 and Pet1 appear to act synergistically to upregulate serotonergic fate. Foxa2 and Pet1 co-bind to a small fraction of genomic regions but mostly bind to different regulatory sites. In contrast to the combinatorial binding activities of other programming TFs, Pet1 does not strictly follow the Foxa2 pioneer. These findings highlight the challenges in formulating generalizable rules for describing the behavior of TF combinations that program distinct neuronal subtypes.

6.
Biochem Mol Biol Educ ; 48(4): 381-390, 2020 07.
Article in English | MEDLINE | ID: mdl-32585745

ABSTRACT

While it is essential for life science students to be trained in modern techniques and approaches, rapidly developing, interdisciplinary fields such as bioinformatics present distinct challenges to undergraduate educators. In particular, many educators lack training in new fields, and high-quality teaching and learning materials may be sparse. To address this challenge with respect to bioinformatics, the Network for the Integration of Bioinformatics into Life Science Education (NIBLSE), in partnership with Quantitative Undergraduate Biology Education and Synthesis (QUBES), developed incubators, a novel collaborative process for the development of open educational resources (OER). Incubators are short-term, online communities that refine unpublished teaching lessons into more polished and widely usable learning resources. The resulting products are published and made freely available in the NIBLSE Resource Collection, providing recognition of scholarly work by incubator participants. In addition to producing accessible, high-quality resources, incubators also provide opportunities for faculty development. Because participants are intentionally chosen to represent a range of expertise in bioinformatics and pedagogy, incubators also build professional connections among educators with diverse backgrounds and perspectives and promote the discussion of practical issues involved in deploying a resource in the classroom. Here we describe the incubator process and provide examples of beneficial outcomes. Our experience indicates that incubators are a low cost, short-term, flexible method for the development of OERs and professional community that could be adapted to a variety of disciplinary and pedagogical contexts.


Subject(s)
Biological Science Disciplines/education , Community Networks , Computational Biology/education , Curriculum/standards , Learning , Teaching/standards , Humans , Students
7.
PLoS One ; 14(11): e0224288, 2019.
Article in English | MEDLINE | ID: mdl-31738797

ABSTRACT

Bioinformatics, a discipline that combines aspects of biology, statistics, mathematics, and computer science, is becoming increasingly important for biological research. However, bioinformatics instruction is not yet generally integrated into undergraduate life sciences curricula. To understand why we studied how bioinformatics is being included in biology education in the US by conducting a nationwide survey of faculty at two- and four-year institutions. The survey asked several open-ended questions that probed barriers to integration, the answers to which were analyzed using a mixed-methods approach. The barrier most frequently reported by the 1,260 respondents was lack of faculty expertise/training, but other deterrents-lack of student interest, overly-full curricula, and lack of student preparation-were also common. Interestingly, the barriers faculty face depended strongly on whether they are members of an underrepresented group and on the Carnegie Classification of their home institution. We were surprised to discover that the cohort of faculty who were awarded their terminal degree most recently reported the most preparation in bioinformatics but teach it at the lowest rate.


Subject(s)
Biology/education , Computational Biology/education , Curriculum , Faculty/statistics & numerical data , Female , Humans , Male , Motivation , Students/psychology , Surveys and Questionnaires/statistics & numerical data , United States
8.
PLoS One ; 13(6): e0196878, 2018.
Article in English | MEDLINE | ID: mdl-29870542

ABSTRACT

Although bioinformatics is becoming increasingly central to research in the life sciences, bioinformatics skills and knowledge are not well integrated into undergraduate biology education. This curricular gap prevents biology students from harnessing the full potential of their education, limiting their career opportunities and slowing research innovation. To advance the integration of bioinformatics into life sciences education, a framework of core bioinformatics competencies is needed. To that end, we here report the results of a survey of biology faculty in the United States about teaching bioinformatics to undergraduate life scientists. Responses were received from 1,260 faculty representing institutions in all fifty states with a combined capacity to educate hundreds of thousands of students every year. Results indicate strong, widespread agreement that bioinformatics knowledge and skills are critical for undergraduate life scientists as well as considerable agreement about which skills are necessary. Perceptions of the importance of some skills varied with the respondent's degree of training, time since degree earned, and/or the Carnegie Classification of the respondent's institution. To assess which skills are currently being taught, we analyzed syllabi of courses with bioinformatics content submitted by survey respondents. Finally, we used the survey results, the analysis of the syllabi, and our collective research and teaching expertise to develop a set of bioinformatics core competencies for undergraduate biology students. These core competencies are intended to serve as a guide for institutions as they work to integrate bioinformatics into their life sciences curricula.


Subject(s)
Computational Biology/education , Mental Competency , Problem-Based Learning , Adolescent , Adult , Female , Humans , Male , United States
9.
PLoS Comput Biol ; 14(2): e1005772, 2018 02.
Article in English | MEDLINE | ID: mdl-29390004

ABSTRACT

Bioinformatics is recognized as part of the essential knowledge base of numerous career paths in biomedical research and healthcare. However, there is little agreement in the field over what that knowledge entails or how best to provide it. These disagreements are compounded by the wide range of populations in need of bioinformatics training, with divergent prior backgrounds and intended application areas. The Curriculum Task Force of the International Society of Computational Biology (ISCB) Education Committee has sought to provide a framework for training needs and curricula in terms of a set of bioinformatics core competencies that cut across many user personas and training programs. The initial competencies developed based on surveys of employers and training programs have since been refined through a multiyear process of community engagement. This report describes the current status of the competencies and presents a series of use cases illustrating how they are being applied in diverse training contexts. These use cases are intended to demonstrate how others can make use of the competencies and engage in the process of their continuing refinement and application. The report concludes with a consideration of remaining challenges and future plans.


Subject(s)
Computational Biology/education , Curriculum , Education, Graduate , Systems Biology/education , Advisory Committees , Africa , Algorithms , Genetic Predisposition to Disease , Illinois , New South Wales , Ohio , Pennsylvania , Software , Surveys and Questionnaires , United Kingdom , Universities
10.
BMC Bioinformatics ; 11: 146, 2010 Mar 22.
Article in English | MEDLINE | ID: mdl-20307279

ABSTRACT

BACKGROUND: While the pairwise alignments produced by sequence similarity searches are a powerful tool for identifying homologous proteins - proteins that share a common ancestor and a similar structure; pairwise sequence alignments often fail to represent accurately the structural alignments inferred from three-dimensional coordinates. Since sequence alignment algorithms produce optimal alignments, the best structural alignments must reflect suboptimal sequence alignment scores. Thus, we have examined a range of suboptimal sequence alignments and a range of scoring parameters to understand better which sequence alignments are likely to be more structurally accurate. RESULTS: We compared near-optimal protein sequence alignments produced by the Zuker algorithm and a set of probabilistic alignments produced by the probA program with structural alignments produced by four different structure alignment algorithms. There is significant overlap between the solution spaces of structural alignments and both the near-optimal sequence alignments produced by commonly used scoring parameters for sequences that share significant sequence similarity (E-values < 10-5) and the ensemble of probA alignments. We constructed a logistic regression model incorporating three input variables derived from sets of near-optimal alignments: robustness, edge frequency, and maximum bits-per-position. A ROC analysis shows that this model more accurately classifies amino acid pairs (edges in the alignment path graph) according to the likelihood of appearance in structural alignments than the robustness score alone. We investigated various trimming protocols for removing incorrect edges from the optimal sequence alignment; the most effective protocol is to remove matches from the semi-global optimal alignment that are outside the boundaries of the local alignment, although trimming according to the model-generated probabilities achieves a similar level of improvement. The model can also be used to generate novel alignments by using the probabilities in lieu of a scoring matrix. These alignments are typically better than the optimal sequence alignment, and include novel correct structural edges. We find that the probA alignments sample a larger variety of alignments than the Zuker set, which more frequently results in alignments that are closer to the structural alignments, but that using the probA alignments as input to the regression model does not increase performance. CONCLUSIONS: The pool of suboptimal pairwise protein sequence alignments substantially overlaps structure-based alignments for pairs with statistically significant similarity, and a regression model based on information contained in this alignment pool improves the accuracy of pairwise alignments with respect to structure-based alignments.


Subject(s)
Proteins/chemistry , Sequence Alignment/methods , Sequence Analysis, Protein
11.
Curr Opin Struct Biol ; 15(3): 254-60, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15919194

ABSTRACT

Modern sequence alignment algorithms are used routinely to identify homologous proteins, proteins that share a common ancestor. Homologous proteins always share similar structures and often have similar functions. Over the past 20 years, sequence comparison has become both more sensitive, largely because of profile-based methods, and more reliable, because of more accurate statistical estimates. As sequence and structure databases become larger, and comparison methods become more powerful, reliable statistical estimates will become even more important for distinguishing similarities that are due to homology from those that are due to analogy (convergence). The newest sequence alignment methods are more sensitive than older methods, but more accurate statistical estimates are needed for their full power to be realized.


Subject(s)
Algorithms , Databases, Protein , Proteins/chemistry , Sequence Alignment/methods , Sequence Analysis, Protein/methods , Amino Acid Sequence , Molecular Sequence Data , Proteins/analysis , Proteins/classification , Sequence Alignment/trends , Sequence Analysis, Protein/trends , Sequence Homology, Amino Acid , Structure-Activity Relationship
12.
Structure ; 12(12): 2103-11, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15576025

ABSTRACT

Structure comparison is a crucial aspect of structural biology today. The field of structure comparison is developing rapidly, with the development of new algorithms, similarity scores, and statistical scores. The predicted large increase of experimental structures and structural models made possible by high-throughput efforts means that structural comparison and searching of structural databases using automated methods will become increasingly common. This Ways & Means article is meant to guide the structural biologist in the basics of structural alignment, and to provide an overview of the available software tools. The main purpose is to encourage users to gain some understanding of the strengths and limitations of structural alignment, and to take these factors into account when interpreting the results of different programs.


Subject(s)
Proteins/genetics , Proteins/physiology , Sequence Analysis, Protein , Sequence Homology , Algorithms , Databases, Protein , Models, Molecular , Protein Structure, Secondary , Sequence Alignment
13.
Protein Sci ; 13(3): 773-85, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14978311

ABSTRACT

Seven protein structure comparison methods and two sequence comparison programs were evaluated on their ability to detect either protein homologs or domains with the same topology (fold) as defined by the CATH structure database. The structure alignment programs Dali, Structal, Combinatorial Extension (CE), VAST, and Matras were tested along with SGM and PRIDE, which calculate a structural distance between two domains without aligning them. We also tested two sequence alignment programs, SSEARCH and PSI-BLAST. Depending upon the level of selectivity and error model, structure alignment programs can detect roughly twice as many homologous domains in CATH as sequence alignment programs. Dali finds the most homologs, 321-533 of 1120 possible true positives (28.7%-45.7%), at an error rate of 0.1 errors per query (EPQ), whereas PSI-BLAST finds 365 true positives (32.6%), regardless of the error model. At an EPQ of 1.0, Dali finds 42%-70% of possible homologs, whereas Matras finds 49%-57%; PSI-BLAST finds 36.9%. However, Dali achieves >84% coverage before the first error for half of the families tested. Dali and PSI-BLAST find 9.2% and 5.2%, respectively, of the 7056 possible topology pairs at an EPQ of 0.1 and 19.5, and 5.9% at an EPQ of 1.0. Most statistical significance estimates reported by the structural alignment programs overestimate the significance of an alignment by orders of magnitude when compared with the actual distribution of errors. These results help quantify the statistical distinction between analogous and homologous structures, and provide a benchmark for structure comparison statistics.


Subject(s)
Databases, Protein , Sequence Alignment/methods , Software/standards , Structural Homology, Protein , Computational Biology/methods , Data Interpretation, Statistical , Proteins/chemistry , ROC Curve , Reproducibility of Results , Sequence Alignment/statistics & numerical data , Software/statistics & numerical data , Software Validation
14.
Nature ; 421(6923): 573, 2003 Feb 06.
Article in English | MEDLINE | ID: mdl-12571566
SELECTION OF CITATIONS
SEARCH DETAIL