Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters








Database
Language
Publication year range
1.
Sci Rep ; 14(1): 12868, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834690

ABSTRACT

Acute myeloid leukemia (AML) is fatal in the majority of adults. Identification of new therapeutic targets and their pharmacologic modulators are needed to improve outcomes. Previous studies had shown that immunization of rabbits with normal peripheral WBCs that had been incubated with fluorodinitrobenzene elicited high titer antibodies that bound to a spectrum of human leukemias. We report that proteomic analyses of immunoaffinity-purified lysates of primary AML cells showed enrichment of scaffolding protein IQGAP1. Immunohistochemistry and gene-expression analyses confirmed IQGAP1 mRNA overexpression in various cytogenetic subtypes of primary human AML compared to normal hematopoietic cells. shRNA knockdown of IQGAP1 blocked proliferation and clonogenicity of human leukemia cell-lines. To develop small molecules targeting IQGAP1 we performed in-silico screening of 212,966 compounds, selected 4 hits targeting the IQGAP1-GRD domain, and conducted SAR of the 'fittest hit' to identify UR778Br, a prototypical agent targeting IQGAP1. UR778Br inhibited proliferation, induced apoptosis, resulted in G2/M arrest, and inhibited colony formation by leukemia cell-lines and primary-AML while sparing normal marrow cells. UR778Br exhibited favorable ADME/T profiles and drug-likeness to treat AML. In summary, AML shows response to IQGAP1 inhibition, and UR778Br, identified through in-silico studies, selectively targeted AML cells while sparing normal marrow.


Subject(s)
Cell Proliferation , Leukemia, Myeloid, Acute , ras GTPase-Activating Proteins , Humans , ras GTPase-Activating Proteins/metabolism , ras GTPase-Activating Proteins/genetics , ras GTPase-Activating Proteins/antagonists & inhibitors , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/genetics , Cell Proliferation/drug effects , Apoptosis/drug effects , Cell Line, Tumor , Computer Simulation , Antineoplastic Agents/pharmacology , Protein Domains , Animals , Proteomics/methods
2.
Sci Adv ; 10(1): eadi1788, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38170778

ABSTRACT

The all-terrain motility of lymphocytes in tissues and tissue-like gels is best described as amoeboid motility. For amoeboid motility, lymphocytes do not require specific biochemical or structural modifications to the surrounding extracellular matrix. Instead, they rely on changing shape and steric interactions with the microenvironment. However, the exact mechanism of amoeboid motility remains elusive. Here, we report that septins participate in amoeboid motility of T cells, enabling the formation of F-actin and α-actinin-rich cortical rings at the sites of cell cortex-indenting collisions with the extracellular matrix. Cortical rings compartmentalize cells into chains of spherical segments that are spatially conformed to the available lumens, forming transient "hourglass"-shaped steric locks onto the surrounding collagen fibers. The steric lock facilitates pressure-driven peristaltic propulsion of cytosolic content by individually contracting cell segments. Our results suggest that septins provide microenvironment-guided partitioning of actomyosin contractility and steric pivots required for amoeboid motility of T cells in tissue-like microenvironments.


Subject(s)
Actomyosin , Amoeba , Actomyosin/metabolism , Septins/metabolism , Cell Movement , Amoeba/metabolism , T-Lymphocytes/metabolism
3.
Cancers (Basel) ; 15(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37444542

ABSTRACT

Small-molecule inhibitors of PD-L1 are postulated to control immune evasion in tumors similar to antibodies that target the PD-L1/PD-1 immune checkpoint axis. However, the identity of targetable PD-L1 inducers is required to develop small-molecule PD-L1 inhibitors. In this study, using chromatin immunoprecipitation (ChIP) assay and siRNA, we demonstrate that vitamin D/VDR regulates PD-L1 expression in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) cells. We have examined whether a VDR antagonist, MeTC7, can inhibit PD-L1. To ensure that MeTC7 inhibits VDR/PD-L1 without off-target effects, we examined competitive inhibition of VDR by MeTC7, utilizing ligand-dependent dimerization of VDR-RXR, RXR-RXR, and VDR-coactivators in a mammalian 2-hybrid (M2H) assay. MeTC7 inhibits VDR selectively, suppresses PD-L1 expression sparing PD-L2, and inhibits the cell viability, clonogenicity, and xenograft growth of AML cells. MeTC7 blocks AML/mesenchymal stem cells (MSCs) adhesion and increases the efferocytotic efficiency of THP-1 AML cells. Additionally, utilizing a syngeneic colorectal cancer model in which VDR/PD-L1 co-upregulation occurs in vivo under radiation therapy (RT), MeTC7 inhibits PD-L1 and enhances intra-tumoral CD8+T cells expressing lymphoid activation antigen-CD69. Taken together, MeTC7 is a promising small-molecule inhibitor of PD-L1 with clinical potential.

4.
J Med Chem ; 65(8): 6039-6055, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35404047

ABSTRACT

Vitamin-D receptor (VDR) mRNA is overexpressed in neuroblastoma and carcinomas of lung, pancreas, and ovaries and predicts poor prognoses. VDR antagonists may be able to inhibit tumors that overexpress VDR. However, the current antagonists are arduous to synthesize and are only partial antagonists, limiting their use. Here, we show that the VDR antagonist MeTC7 (5), which can be synthesized from 7-dehydrocholesterol (6) in two steps, inhibits VDR selectively, suppresses the viability of cancer cell-lines, and reduces the growth of the spontaneous transgenic TH-MYCN neuroblastoma and xenografts in vivo. The VDR selectivity of 5 against RXRα and PPAR-γ was confirmed, and docking studies using VDR-LBD indicated that 5 induces major changes in the binding motifs, which potentially result in VDR antagonistic effects. These data highlight the therapeutic benefits of targeting VDR for the treatment of malignancies and demonstrate the creation of selective VDR antagonists that are easy to synthesize.


Subject(s)
Neuroblastoma , Receptors, Calcitriol , Animals , Animals, Genetically Modified , Heterografts , Humans , Receptors, Calcitriol/antagonists & inhibitors , Receptors, Calcitriol/metabolism , Vitamins
5.
Sci Rep ; 10(1): 3241, 2020 02 24.
Article in English | MEDLINE | ID: mdl-32094384

ABSTRACT

Forchlorfenuron (FCF) is a synthetic plant cytokinin widely used in agriculture to promote fruit size, that paradoxically inhibits proliferation, migration, and invasion in human cancer cell lines. FCF has also been shown to affect HIF-1α and HER2, which are both known to play a crucial role in cancer cell survival. In this study, we have developed potent FCF analogs through structural modification of FCF, coined UR214-1, UR214-7, and UR214-9. Compared to parental FCF, these analogs are more effective in decreasing viability and proliferation in both ovarian and endometrial cancer cell lines. These FCF analogs also suppress HER2 expression at a concentration lower than that of FCF. In addition, we found that treatment with either FCF or its analogs decreases the expression of human epididymis protein 4 (HE4), which is commonly upregulated in ovarian and endometrial cancers. Given the association between cancer behavior and HE4 production in gynecologic cancers, our findings may provide insight useful in the development of new treatment strategies for gynecologic cancers.


Subject(s)
Drug Development , Phenylurea Compounds/chemistry , Phenylurea Compounds/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Endometrial Neoplasms/genetics , Endometrial Neoplasms/mortality , Endometrial Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Ovarian Neoplasms/pathology , Receptor, ErbB-2/metabolism , Septins/genetics , Septins/metabolism , Survival Rate , WAP Four-Disulfide Core Domain Protein 2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL