Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 221
Filter
1.
Mol Genet Metab Rep ; 41: 101133, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39246821

ABSTRACT

Cutis Verticis Gyrata (CVG) is an uncommon condition, often classified as primary (idiopathic) or secondary to other diseases or syndromes. Its pathogenesis remains poorly understood, and its association with genetic syndromes is particularly rare. Noonan and Turner syndromes are distinct genetic disorders with characteristic phenotypes and multiple systemic involvements. This report aims to highlight the diagnostic complexities when CVG presents in the backdrop of these syndromes. A 38 years old patient was presented with chief complaints of receding hairline, dropping eyelids, cerebral deformations with deep furrows and thickened dermis. On the basis of patient's complaints, Noonan or turner syndrome was considered as possible diagnosis. This particular report presents a case of patient suffering from CVG having history of noonan and turner syndrome. With the detailed MRI, histology etc. CVG was finally confirmed. The novelty of this case lies in its rarity, diagnostic complexity, and the need for a multidisciplinary approach to unravel and manage the intersecting conditions. It contributes valuable insights to the existing medical literature, enhancing our understanding of the interplay between dermatological and genetic conditions. Patients with Noonan and turner syndrome exhibit clinical signs and symptoms that are strikingly similar to those of CVG, suggesting that this presents a significant diagnostic problem. An unfavorable outcome could arise from delayed or incorrect diagnosis. Because of this, it is recommended that healthcare fraternities should include uncommon illnesses like CVG as differential diagnosis. Considering CVG in differential diagnosis is crucial for early identification, accurate diagnosis, and comprehensive management. It ensures that associated systemic and genetic conditions are not overlooked and that patients receive holistic and personalized care.

2.
Article in English | MEDLINE | ID: mdl-39249151

ABSTRACT

Endophytic fungi, as plant symbionts, produce an elaborate array of enzymes for efficient disintegration of lignocellulosic biomass into constituent monomeric sugars, making them novel source of lignocellulolytic CAZymes with immense potential in future biorefineries. The present study reports lignocellulolytic enzymes production potential of an endophytic halotolerant Penicillium oxalicum strain isolated from Citrus limon, under submerged and solid-state fermentation (SmF & SSF, respectively), in the presence and absence of salt (1 M NaCl). The comparative QTOF-LC/MS-based exoproteome analysis of the culture extracts unveiled differential expression of CAZymes, with the higher abundance of GH6 and GH7 family cellobiohydrolase in the presence of 1 M salt. The strain improvement program, employing cyclic mutagenesis and diploidization, was utilized to develop hyper-cellulase producing mutant strains of P. oxalicum. The enzyme production of the developed strain (POx-M35) was further enhanced through statistical optimization of the culture conditions utilizing glucose mix disaccharides (GMDs) as an inducer. This optimization process resulted in the lignocellulolytic cocktail that contained high titers (U/mL) of endoglucanase (EG) (146.16), cellobiohydrolase (CBHI) (6.99), ß-glucosidase (ß-G) (26.21), xylanase (336.05) and FPase (2.02 U/mL), which were 5.47-, 5.54-, 8.55-, 4.96-, and 4.39-fold higher when compared to the enzyme titers obtained in wild HP1, respectively. Furthermore, the lignocellulolytic cocktails designed by blending secretome produced by mutant POx-M35 with xylanases (GH10 and GH11) derived from Malbranchea cinnamomea resulted in efficient hydrolysis of unwashed acid pretreated (UWAP) rice straw slurry and mild alkali deacetylated (MAD) rice straw. This study underscores the potential of bioprospecting novel fungus and developing an improved strain for optimized production and constitution of lignocellulolytic cocktails that can be an important determinant in advancing biomass conversion technologies.

3.
Physiol Plant ; 176(5): e14513, 2024.
Article in English | MEDLINE | ID: mdl-39262029

ABSTRACT

Pathogenesis-related proteins (PR), including osmotins, play a vital role in plant defense, being activated in response to diverse biotic and abiotic stresses. Despite their significance, the mechanistic insights into the role of osmotins in plant defense have not been extensively explored. The present study explores the cloning and characterization of the osmotin gene (WsOsm) from Withania somnifera, aiming to illuminate its role in plant defense mechanisms. Quantitative real-time PCR analysis revealed significant induction of WsOsm in response to various phytohormones e.g. abscisic acid, salicylic acid, methyl jasmonate, brassinosteroids, and ethrel, as well as biotic and abiotic stresses like heat, cold, salt, and drought. To further elucidate WsOsm's functional role, we overexpressed the gene in Nicotiana tabacum, resulting in heightened resistance against the Alternaria solani pathogen. Additionally, we observed enhancements in shoot length, root length, and root biomass in the transgenic tobacco plants compared to wild plants. Notably, the WsOsm- overexpressing seedlings demonstrated improved salt and drought stress tolerance, particularly at the seedling stage. Confocal histological analysis of H2O2 and biochemical studies of antioxidant enzyme activities revealed higher levels in the WsOsm overexpressing lines, indicating enhanced antioxidant defense. Furthermore, a pull-down assay and mass spectrometry analysis revealed a potential interaction between WsOsm and defensin, a known antifungal PR protein (WsDF). This suggests a novel role of WsOsm in mediating plant defense responses by interacting with other PR proteins. Overall, these findings pave the way for potential future applications of WsOsm in developing stress-tolerant crops and improving plant defense strategies against pathogens.


Subject(s)
Defensins , Gene Expression Regulation, Plant , Nicotiana , Plant Proteins , Plants, Genetically Modified , Stress, Physiological , Withania , Withania/genetics , Withania/physiology , Withania/metabolism , Withania/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Nicotiana/genetics , Nicotiana/physiology , Nicotiana/drug effects , Nicotiana/microbiology , Gene Expression Regulation, Plant/drug effects , Stress, Physiological/genetics , Defensins/genetics , Defensins/metabolism , Plant Growth Regulators/metabolism , Alternaria/physiology , Droughts , Seedlings/genetics , Seedlings/physiology , Seedlings/drug effects , Salicylic Acid/metabolism , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Hydrogen Peroxide/metabolism , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Plant Roots/genetics , Plant Roots/drug effects , Plant Roots/physiology
4.
Int J Biol Macromol ; 278(Pt 1): 134691, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39142483

ABSTRACT

Pathogenesis-related protein 1 (PR-1) is an antimicrobial protein involved in systemic acquired resistance (SAR) in plants, but its regulatory role and interactions with other pathways remain unclear. In this study, we functionally characterize WsPR-1 gene of Withania somnifera in Nicotiana tabacum to elucidate its role in plant defense, growth, and development. Interestingly, transgenic tobacco plants with increased levels of cytokinin (CK) and decreased gibberellins (GAs) exhibited stunted shoot growth, an underdeveloped root system, modified leaf morphology, reduced seed pod production, and delayed leaf senescence. Transcriptional analysis revealed that WsPR-1 overexpression downregulated the GA 20-oxidase (GA20ox) gene involved in GA biosynthesis while upregulating GA 2-oxidase (GA2ox), a GA catabolic enzyme. Moreover, transcript levels of FRUITFULL (FUL) and LEAFY (NFL2) flowering genes exhibited a decrease in WsPR-1 plants, which could explain the delayed flowering and reduced seed pod development in transgenic plants. Confocal microscopy confirmed increased lignin deposition in stem cross-sections of WsPR-1 transgenic plants, supported by gene expression analysis and lignin content quantification. Additionally, our findings also suggest the involvement of Knotted1-like homeobox (KNOX) gene in enhancing cytokinin levels. This study highlights PR-1's regulatory role in plant growth and development, with potential to boost crop yields and enhance resilience.

5.
Appl Microbiol Biotechnol ; 108(1): 444, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39167166

ABSTRACT

The current study is the first to describe the temporal and differential transcriptional expression of two lytic polysaccharide monooxygenase (LPMO) genes of Rasamsonia emersonii in response to various carbon sources. The mass spectrometry based secretome analysis of carbohydrate active enzymes (CAZymes) expression in response to different carbon sources showed varying levels of LPMOs (AA9), AA3, AA7, catalase, and superoxide dismutase enzymes pointing toward the redox-interplay between the LPMOs and auxiliary enzymes. Moreover, it was observed that cello-oligosaccharides have a negative impact on the expression of LPMOs, which has not been highlighted in previous reports. The LPMO1 (30 kDa) and LPMO2 (47 kDa), cloned and expressed in Pichia pastoris, were catalytically active with (kcat/Km) of 6.6×10-2 mg-1 ml min-1 and 1.8×10-2 mg-1 ml min-1 against Avicel, respectively. The mass spectrometry of hydrolysis products of Avicel/carboxy methyl cellulose (CMC) showed presence of C1/C4 oxidized oligosaccharides indicating them to be Type 3 LPMOs. The 3D structural analysis of LPMO1 and LPMO2 revealed distinct arrangements of conserved catalytic residues at their active site. The developed enzyme cocktails consisting of cellulase from R. emersonii mutant M36 supplemented with recombinant LPMO1/LPMO2 resulted in significantly enhanced saccharification of steam/acid pretreated unwashed rice straw slurry from PRAJ industries (Pune, India). The current work indicates that LPMO1 and LPMO2 are catalytically efficient and have a high degree of thermostability, emphasizing their usefulness in improving benchmark enzyme cocktail performance. KEY POINTS: • Mass spectrometry depicts subtle interactions between LPMOs and auxiliary enzymes. • Cello-oligosaccharides strongly downregulated the LPMO1 expression. • Developed LPMO cocktails showed superior hydrolysis in comparison to CellicCTec3.


Subject(s)
Mixed Function Oxygenases , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/chemistry , Polysaccharides/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Hydrolysis , Cellulose/metabolism , Gene Expression Regulation, Fungal , Oligosaccharides/metabolism , Cloning, Molecular
6.
3 Biotech ; 14(6): 168, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828098

ABSTRACT

The lignocellulolytic accessory enzyme, Feruloyl esterase C (FE_5DR), encoded in the genome of thermotolerant Myceliophthora verrucosa was successfully cloned and heterologously expressed in Pichia pastoris. The expressed FE_5DR was purified using UNOsphere™ Q anion exchange chromatography column, exhibiting a homogeneous band of ~ 39 kDa. Its optimum temperature was determined to be 60 °C, with an optimal pH of 6.0. Additionally, the enzyme activity of FE_5DR was significantly enhanced by preincubation in a buffer containing Mg2+, Cu2+ and Ca2 metal ions. Enzyme kinetic parameters, computed from double reciprocal Lineweaver-Burk plots, yielded observed Vmax and Km values of 0.758 U/mg and 0.439 mM, respectively. Furthermore, the potential of custom-made cocktails comprising FE_5DR and benchmark cellulase derived from the developed mutant strain of Aspergillus allahabadii MAN 40, as well as the biorefinery-relevant lignocellulolytic enzyme Cellic CTec 3, resulted in improved saccharification of unwashed acid pretreated (UWAP) rice straw slurry and mild alkali deacetylated (MAD) rice straw when compared to benchmark MAN 40 and Cellic CTec 3. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-04013-7.

7.
Heart Rhythm ; 21(9): 1658-1668, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38823670

ABSTRACT

BACKGROUND: It is unclear whether advances in management of acute coronary syndrome (ACS) and introduction of novel oral anticoagulants have changed outcomes in patients with ACS with concomitant atrial fibrillation (AF). OBJECTIVE: This study aimed to examine the incidence of AF in patients admitted for ACS and to evaluate its association with adverse outcomes, given the recent advances in management of both diseases. METHODS: Natural language processing search algorithms identified AF in patients admitted with ACS across 13 Northwell Health Hospitals from 2015 to 2021. Hierarchical generalized linear mixed modeling was used to assess the association between AF and in-hospital mortality, bleeding, and stroke outcomes; marginal Cox regression modeling was used to assess the association between AF and postdischarge mortality. RESULTS: Of 12,315 patients admitted for ACS, 3018 (24.5%) had AF with 1609 (53.3%) newly diagnosed. AF patients more commonly received anticoagulation with an oral anticoagulant (80.4% vs 12.3%) or heparin (61.9% vs 56.9%), had lengthier intensive care unit stay (72 vs 49 hours), and underwent fewer percutaneous coronary interventions (31.9% vs 53.1%). In-hospital bleeding, stroke, and mortality were higher in the AF group (15.3% vs 5.0%, 7.4% vs 2.4%, and 6.9% vs 2.1%, respectively). AF was an independent risk factor for all in-hospital outcomes (odds ratios of 2.5, 2.7, and 2.0 for bleeding, stroke, and mortality, respectively) as well as for postdischarge mortality (hazard ratio, 1.3; 95% CI, 1.2-1.5). CONCLUSION: AF is present in 25% of ACS patients and increases risk of in-hospital and postdischarge adverse outcomes. Additional data are required to direct optimal management.


Subject(s)
Acute Coronary Syndrome , Atrial Fibrillation , Hospital Mortality , Patient Discharge , Humans , Atrial Fibrillation/complications , Atrial Fibrillation/mortality , Atrial Fibrillation/drug therapy , Acute Coronary Syndrome/mortality , Acute Coronary Syndrome/complications , Acute Coronary Syndrome/therapy , Male , Female , Aged , Hospital Mortality/trends , Anticoagulants/therapeutic use , Incidence , Retrospective Studies , Survival Rate/trends , Middle Aged , Risk Factors , Follow-Up Studies , Stroke/epidemiology , Stroke/etiology , Stroke/mortality
8.
Food Chem Toxicol ; 189: 114747, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768937

ABSTRACT

Chronic exposure to lead (Pb) induces neurodegenerative changes in animals and humans. Drugs with strong antioxidant properties are effective against Pb-mediated neurotoxicity. In a prior study, we identified 5,7-dihydroxy-3',4',5'-trimethoxyflavone (TMF) from Ocimum basilicum L. leaves as a potent antioxidant and neuroprotective compound. This research explores TMF's neuroprotective effects against Pb-induced brain toxicity in rats to establish it as a therapeutic agent. Rats received lead acetate (100 mg/kg, orally, once daily) for 30 days to induce brain injury, followed by TMF treatment (5 and 10 mg/kg, oral, once daily) 30 min later. Cognitive and motor functions were assessed using Morris Water Maze and horizontal bar tests. Lead, monoamine oxidase (MAO) A and B enzymes, reduced glutathione (GSH), thiobarbituric acid reactive species (TBARS), Tumor necrosis factor-alpha (TNF-α), and IL-6 levels were measured in the hippocampus and cerebellum. Pb exposure impaired cognitive and motor functions, increased Pb, TBARS, TNF-α, and IL-6 levels, and compromised MAO A & B and GSH levels. TMF reversed Pb-induced memory and motor deficits and normalized biochemical anomalies. TMF's neuroprotective effects against lead involve chelating, antioxidant, anti-inflammatory, and monoaminergic properties, suggesting its potential as a treatment for metal-induced brain injury.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Animals , Antioxidants/pharmacology , Male , Rats , Anti-Inflammatory Agents/pharmacology , Neuroprotective Agents/pharmacology , Flavones/pharmacology , Lead/toxicity , Chelating Agents/pharmacology , Rats, Wistar , Hippocampus/drug effects , Hippocampus/metabolism , Neurotoxicity Syndromes/drug therapy , Neurotoxicity Syndromes/prevention & control , Glutathione/metabolism , Maze Learning/drug effects
9.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38675414

ABSTRACT

Inflammation is a distinguished clinical manifestation of COVID-19 and type 2 diabetes mellitus (T2DM), often associated with inflammatory dysfunctions, insulin resistance, metabolic dysregulation, and other complications. The present study aims to test the hypothesis that serum concentrations of PAR-1 levels differ between COVID-19 diabetic patients (T2DM) and non-diabetic COVID-19 patients and determine their association with different biochemical parameters and inflammatory biomarkers. T2DM patients with COVID-19 (n = 50) with glycated hemoglobin (HbA1c) levels of (9.23 ± 1.66) and non-diabetic COVID-19 patients (n = 50) with HbA1c levels (4.39 ± 0.57) were recruited in this study. The serum PAR-1 levels (ELISA method) were determined in both groups and correlated with parameters such as age, BMI, inflammatory markers including CRP, interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), D-dimer, homocysteine, and N-terminal pro-B-type natriuretic peptide (NT-proBNP). Demographic variables such as BMI (29.21 ± 3.52 vs. controls 21.30 ± 2.11) and HbA1c (9.23 ± 1.66 vs. controls 4.39 ± 0.57) were found to be statistically elevated in COVID-19 T2DM patients compared to non-diabetic COVID-19 patients. The concentrations of several inflammatory biomarkers and PAR-1 were remarkably increased in the COVID-19 T2DM group when compared with the non-diabetic COVID-19 group. The univariate analysis revealed that increased serum PAR-1 estimations were positively correlated with enhanced HbA1c, BMI, inflammatory cytokines, D-dimer, homocysteine, and NT-proBNP. The findings in the current study suggest that increased levels of serum PAR-1 in the bloodstream could potentially serve as an independent biomarker of inflammation in COVID-19 patients with T2DM.

11.
Arch Microbiol ; 206(5): 236, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38676717

ABSTRACT

Lignocellulolytic enzymes from a novel Myceliophthora verrucosa (5DR) strain was found to potentiate the efficacy of benchmark cellulase during saccharification of acid/alkali treated bagasse by ~ 2.24 fold, indicating it to be an important source of auxiliary enzymes. The De-novo sequencing and analysis of M. verrucosa genome (31.7 Mb) revealed to encode for 7989 putative genes, representing a wide array of CAZymes (366) with a high proportions of auxiliary activity (AA) genes (76). The LC/MS QTOF based secretome analysis of M. verrucosa showed high abundance of glycosyl hydrolases and AA proteins with cellobiose dehydrogenase (CDH) (AA8), being the most prominent auxiliary protein. A gene coding for lytic polysaccharide monooxygenase (LPMO) was expressed in Pichia pastoris and CDH produced by M. verrucosa culture on rice straw based solidified medium were purified and characterized. The mass spectrometry of LPMO catalyzed hydrolytic products of avicel showed the release of both C1/C4 oxidized products, indicating it to be type-3. The lignocellulolytic cocktail comprising of in-house cellulase produced by Aspergillus allahabadii strain spiked with LPMO & CDH exhibited enhanced and better hydrolysis of mild alkali deacetylated (MAD) and unwashed acid pretreated rice straw slurry (UWAP), when compared to Cellic CTec3 at high substrate loading rate.


Subject(s)
Biomass , Fungal Proteins , Genome, Fungal , Lignin , Saccharomycetales , Sordariales , Lignin/metabolism , Sordariales/genetics , Sordariales/enzymology , Sordariales/metabolism , Hydrolysis , Fungal Proteins/genetics , Fungal Proteins/metabolism , Carbohydrate Dehydrogenases/metabolism , Carbohydrate Dehydrogenases/genetics , Cellulose/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Cellulase/metabolism , Cellulase/genetics
12.
Eur Respir Rev ; 33(172)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38599675

ABSTRACT

Respiratory symptoms are ubiquitous in children and, even though they may be the harbinger of poor long-term outcomes, are often trivialised. Adverse exposures pre-conception, antenatally and in early childhood have lifetime impacts on respiratory health. For the most part, lung function tracks from the pre-school years at least into late middle age, and airflow obstruction is associated not merely with poor respiratory outcomes but also early all-cause morbidity and mortality. Much would be preventable if social determinants of adverse outcomes were to be addressed. This review presents the perspectives of paediatricians from many different contexts, both high and low income, including Europe, the Americas, Australasia, India, Africa and China. It should be noted that there are islands of poverty within even the highest income settings and, conversely, opulent areas in even the most deprived countries. The heaviest burden of any adverse effects falls on those of the lowest socioeconomic status. Themes include passive exposure to tobacco smoke and indoor and outdoor pollution, across the entire developmental course, and lack of access even to simple affordable medications, let alone the new biologicals. Commonly, disease outcomes are worse in resource-poor areas. Both within and between countries there are avoidable gross disparities in outcomes. Climate change is also bearing down hardest on the poorest children. This review highlights the need for vigorous advocacy for children to improve lifelong health. It also highlights that there are ongoing culturally sensitive interventions to address social determinants of disease which are already benefiting children.


Subject(s)
Respiration Disorders , Social Determinants of Health , Child , Child, Preschool , Humans , China , Europe , Morbidity , Poverty , Female , Pregnancy , Infant, Newborn , Infant , Prenatal Exposure Delayed Effects
13.
Bioprocess Biosyst Eng ; 47(4): 567-582, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38470501

ABSTRACT

The present study reports a highly thermostable ß-glucosidase (GH3) from Rasamsonia emersonii that was heterologously expressed in Pichia pastoris. Extracellular ß-glucosidase was purified to homogeneity using single step affinity chromatography with molecular weight of ~ 110 kDa. Intriguingly, the purified enzyme displayed high tolerance to inhibitors mainly acetic acid, formic acid, ferulic acid, vanillin and 5-hydroxymethyl furfural at concentrations exceeding those present in acid steam pretreated rice straw slurry used for hydrolysis and subsequent fermentation in 2G ethanol plants. Characteristics of purified ß-glucosidase revealed the optimal activity at 80 °C, pH 5.0 and displayed high thermostability over broad range of temperature 50-70 °C with maximum half-life of ~ 60 h at 50 °C, pH 5.0. The putative transglycosylation activity of ß-glucosidase was appreciably enhanced in the presence of methanol as an acceptor. Using the transglycosylation ability of ß-glucosidase, the generated low cost mixed glucose disaccharides resulted in the increased induction of R. emersonii cellulase under submerged fermentation. Scaling up the recombinant protein production at fermenter level using temporal feeding approach resulted in maximal ß-glucosidase titres of 134,660 units/L. Furthermore, a developed custom made enzyme cocktail consisting of cellulase from R. emersonii mutant M36 supplemented with recombinant ß-glucosidase resulted in significantly enhanced hydrolysis of pretreated rice straw slurry from IOCL industries (India). Our results suggest multi-faceted ß-glucosidase from R. emersonii can overcome obstacles mainly high cost associated enzyme production, inhibitors that impair the sugar yields and thermal inactivation of enzyme.


Subject(s)
Eurotiales , beta-Glucosidase , Hydrolysis , beta-Glucosidase/chemistry , Biomass
14.
Curr Res Struct Biol ; 7: 100133, 2024.
Article in English | MEDLINE | ID: mdl-38435052

ABSTRACT

Liquid-liquid phase separation plays a crucial role in cellular physiology, as it leads to the formation of membrane-less organelles in response to various internal stimuli, contributing to various cellular functions. However, the influence of exogenous stimuli on this process in the context of disease intervention remains unexplored. In this current investigation, we explore the impact of doxorubicin on the abnormal self-assembly of p53 using a combination of biophysical and imaging techniques. Additionally, we shed light on the potential mechanisms behind chemoresistance in cancer cells carrying mutant p53. Our findings reveal that doxorubicin co-localizes with both wild-type p53 (WTp53) and its mutant variants. Our in vitro experiments indicate that doxorubicin interacts with the N-terminal-deleted form of WTp53 (WTp53ΔNterm), inducing liquid-liquid phase separation, ultimately leading to protein aggregation. Notably, the p53 variants at the R273 position exhibit a propensity for phase separation even in the absence of doxorubicin, highlighting the destabilizing effects of point mutations at this position. The strong interaction between doxorubicin and p53 variants, along with its localization within the protein condensates, provides a potential explanation for the development of chemotherapy resistance. Collectively, our cellular and in vitro studies emphasize the role of exogenous agents in driving phase separation-mediated p53 aggregation.

15.
Indian J Pathol Microbiol ; 67(2): 449-451, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38391334

ABSTRACT

ABSTRACT: Anemia coexisting with Gaucher disease (GD) is often associated with non-hemolytic processes. Few cases of GD with autoimmune hemolytic anemia have been reported. However, literature on GD with concomitant nonimmune hemolytic anemia is scarce. A 1-year 6-month-old male child presented in 2018 with complaints of palpable mass in left upper abdomen, fever, cough, and vomiting. On examination, he had pallor, hepatosplenomegaly of 2 cm and 8 cm below costal margin, respectively. A clinical diagnosis of hemolytic anemia was suspected. Complete blood count revealed Hb---6.7 g/dL, TLC---8.9 × 10 3 /µL, platelet count---180 × 10 3 /µL. Peripheral smear showed predominantly microcytic hypochromic anemia with moderate degree of anisocytosis, many nucleated red blood cells, few schistocytes, polychromatophils and corrected reticulocyte count 7.89%. S. Bilirubin was 1.1 mg/dL. Hb high-performance liquid chromatography (HPLC) of the child and his parents was within normal limit. Hematological work up revealed negative results for direct Coombs' test, osmotic fragility test, and sickling test. Test for Glucose-6-phosphate dehydrogenase deficiency was positive (39 units/trillion RBC, normal 146--376). He was transfused intermittently and given steroids to manage his anemia. He was on regular follow up during which his blood counts revealed persistent anemia and thrombocytopenia. In view of this, bone marrow was performed to exclude myelofibrosis. Aspirate smears were cellular and showed normoblastic erythroid hyperplasia. Numerous large histiocytes with basophilic fibrillary cytoplasm exhibiting "crumpled tissue paper" appearance were seen. Similar findings were seen on bone marrow trephine biopsy. Genetic testing revealed pathogenic variations in the GBA gene. Beta glucosidase enzyme levels were low while chitotriosidase was raised (1109.19 nmol/hr/mL). A final diagnosis of G6PD with GD was made. The present study shows rare association of GD with Glucose-6-phosphate dehydrogenase deficiency.


Subject(s)
Gaucher Disease , Glucosephosphate Dehydrogenase Deficiency , Humans , Gaucher Disease/complications , Gaucher Disease/genetics , Gaucher Disease/diagnosis , Male , Glucosephosphate Dehydrogenase Deficiency/complications , Glucosephosphate Dehydrogenase Deficiency/genetics , Glucosephosphate Dehydrogenase Deficiency/diagnosis , Infant , Bone Marrow/pathology
16.
Sci Total Environ ; 915: 170113, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38232846

ABSTRACT

Pesticides are chemical substances of natural or synthetic origin that are used to eradicate pests and insects. These are indispensable in the agricultural processes for better crop production. Pesticide use aims to promote crop yield and protect the crops from diseases and damage. Pesticides must be handled carefully and disposed of appropriately because they are dangerous to people and other species by default. Environmental pollution occurs when pesticide contamination spreads away from the intended plants. Older pesticides such as lindane and dichlorodiphenyltrichloroethane (DDT) may remain in water and soil for a longer time. These accumulate in various parts of the food chain and cause damage to the ecosystem. Biological techniques in the management of pest control such as importation, augmentation, and conservation, and the accompanying procedures are more efficient, less expensive, and ecologically sound than other ways. This review mainly focuses on the consequences on the targeted and non-targeted organisms including the health and well-being of humans by the use of pesticides and their toxicity. The side effects that occur when a pesticide's LD50 exceeds the accepted limit through oral or skin penetration due to their binding to various receptors such as estrogen receptors, GABA, EGFR, and others. These pesticide classes include carbamates, pyrethroids, organochlorides, organophosphorus, and others. The current study seeks to highlight the urgent requirement for a novel agricultural concept that includes a major reduction in the use of chemical pesticides.


Subject(s)
Pesticides , Pyrethrins , Humans , Pesticides/analysis , Ecosystem , Environmental Pollution , Crops, Agricultural
17.
Neurochem Res ; 49(1): 52-65, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37597050

ABSTRACT

Increased oxidative stress and acetylcholinesterase (AChE) activity are key pathological characters contributing to the memory disorders. Thus, drugs targeting both oxidative stress and AChE are being explored for the management of cognitive dysfunction. Morus alba fruits (commonly consumed for its high nutritious value) are known to have antioxidant and AChE inhibitory effects. However, the role of Morus alba fruits in the management of memory disorders has not reported yet. This investigation was conducted to assess the antioxidant and AChE inhibitory potential of Morus alba fruit extracts in-vitro and to identify the components responsible for such effects. Further, the obtained bioactive component was studied for possible memory improvement effects against streptozotocin (STZ) induced dementia. To isolate the bioactive component in-vitro DPPH and AChE assays guided fractionation was performed. Memory functions in mice were determined using Morris Water Maze test while brain biochemical parameters were measured to understand the mechanism of action. In-vitro assays revealed strong AChE and DPPH inhibitory potential of methanol extract (ME), therefore, it was further fractionated. Among various fractions obtained, ethyl-acetate fraction (EAF) was found to possess marked AChE and DPPH inhibitory activities. On subsequent fractionation of EAF, bioactivity of obtained sub-fractions was found to be inferior to EAF. Further, both ME and EAF improved STZ (intracerebroventricular) induced cognitive dysfunction in animals by restoring endogenous antioxidant status (superoxide dismutase and reduced glutathione) and reducing thiobarbituric acid reactive species and nitric oxide levels along with brain AChE and myeloperoxidase activity. TLC densitometric studies showed appreciable levels of phenolic acids and quercetin in both EAF and ME. It can be concluded that Morus alba fruit extract has the ability to modulate cholinergic and oxidative system due to presence of phenolic and flavonoid compounds and hence, could aid in the management of memory disorders.


Subject(s)
Antioxidants , Cognitive Dysfunction , Mice , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Streptozocin/toxicity , Fruit/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Acetylcholinesterase/metabolism , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Memory Disorders/chemically induced , Oxidative Stress , Cognition , Cholinergic Agents/adverse effects , Cholinergic Agents/analysis , Maze Learning
18.
Indian J Pediatr ; 91(4): 358-365, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37378885

ABSTRACT

OBJECTIVES: To evaluate the incidence of laboratory-confirmed pertussis (LCP) among infants hospitalized with acute respiratory infections (ARIs) and meeting the Centers for Disease Control and Prevention (CDC)-recommended clinical case definition. METHODS: An investigator-initiated active surveillance for clinically suspected cases (CSCs) of pertussis screened infants aged ≤6 mo hospitalized with ARIs during January 2020-April 2022 at seven centers across India. Reverse transcription-polymerase chain reaction (RT-PCR) was used to detect Bordetella pertussis in nasopharyngeal swabs. Infants were classified as having 'LCP' or 'probable pertussis' (PP). RESULTS: Among 1102 screened infants, 400 participants met the CDC-2020 clinical case definition for pertussis. Of these, 34/400 (8.5%) had LCP and 46/400 (11.5%) had PP. The proportion of participants with LCP and PP was similar among infants aged 0-3 and 4-6 mo [LCP: 0-3 mo, 21/248 (~9%); 4-6 mo, 13/152 (~9%); PP: 0-3 mo, 30/248 (~12%); 4-6 mo, 16/152 (~11%)]. Cough illness lasted ≥2 wk in 3/34 (~9%) and 34/46 (~74%) participants with LCP and PP, respectively. Notably, 80% CSCs had neither LCP nor PP, and a respiratory pathogen apart from B. pertussis was detected in ~32%. Ventilation was required in 12 participants with LCP/PP. CONCLUSIONS: In this first study from India based on revised CDC guidelines, the incidence of LCP was 8.5%; cough illness was not a predominant feature. Infants below the age appropriate for vaccination are prone to pertussis-related hospital admissions, ICU care, and ventilation. Maternal immunization may be evaluated for neonatal protection, in addition to other strategies, to decrease disease burden in this highly vulnerable group. CLINICAL TRIAL REGISTRATION NUMBER: CTRI/2019/12/022449.


Subject(s)
Respiratory Tract Infections , Whooping Cough , Infant , Infant, Newborn , Humans , Whooping Cough/prevention & control , Bordetella pertussis , Hospitals , India , Cough
20.
Diagnostics (Basel) ; 13(19)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37835901

ABSTRACT

AIM: The study aims to test the hypothesis that concentrations of adropin and afamin differ between patients in various stages of chronic kidney disease when compared with healthy controls. The study also investigates the association of the biomarkers (adropin and afamin) with CKD-MBD and traditional cardiovascular risk parameters in CKD patients. METHODOLOGY: The cross-sectional study includes the subjects divided into four groups comprising the control group (healthy volunteers = 50), CKD stages 1-2 patients (n = 50), CKD stages 3-4 patients (n = 50), CKD stage 5 patients (n = 50). Serum concentrations of adropin and afamin were determined using ELISA. Clinical variables (renal, lipid, and CKD-MBD parameters) were correlated to adropin and afamin concentrations. RESULTS: Afamin concentration was found to be higher in group IV, followed by groups III and II when compared to the control group, i.e., (83.243 ± 1.46, 64.233 ± 0.99, and 28.948 ± 0.72 vs. 14.476 ± 0.5) mg/L (p < 0.001), and adropin concentration was found to be lower in group IV as compared to groups III, II, and I (200.342 ± 8.37 vs. 284.682 ± 9.89 vs. 413.208 ± 12.32 vs. 706.542 ± 11.32) pg/mL (p < 0.001), respectively. Pearson correlation analysis showed that afamin was positively correlated with traditional cardiovascular risk biomarkers, while adropin showed a negative correlation. CONCLUSIONS: Adropin and afamin may potentially serve as futuristic predictors for the deterioration of renal function and may be involved in the pathological mechanisms of CKD and its associated complications such as CKD-MBD and high lipid levels.

SELECTION OF CITATIONS
SEARCH DETAIL