Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
PLoS One ; 19(5): e0301082, 2024.
Article in English | MEDLINE | ID: mdl-38722977

ABSTRACT

Branching morphogenesis is a complex process shared by many organs including the lungs, kidney, prostate, as well as several exocrine organs including the salivary, mammary and lacrimal glands. This critical developmental program ensures the expansion of an organ's surface area thereby maximizing processes of cellular secretion or absorption. It is guided by reciprocal signaling from the epithelial and mesenchymal cells. While signaling pathways driving salivary gland branching morphogenesis have been relatively well-studied, our understanding of the underlying transcriptional regulatory mechanisms directing this program, is limited. Here, we performed in vivo and ex vivo studies of the embryonic mouse submandibular gland to determine the function of the transcription factor ΔNp63, in directing branching morphogenesis. Our studies show that loss of ΔNp63 results in alterations in the differentiation program of the ductal cells which is accompanied by a dramatic reduction in branching morphogenesis that is mediated by dysregulation of WNT signaling. We show that ΔNp63 modulates WNT signaling to promote branching morphogenesis by directly regulating Sfrp1 expression. Collectively, our findings have revealed a novel role for ΔNp63 in the regulation of this critical process and offers a better understanding of the transcriptional networks involved in branching morphogenesis.


Subject(s)
Gene Expression Regulation, Developmental , Membrane Proteins , Morphogenesis , Animals , Mice , Morphogenesis/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Salivary Glands/metabolism , Salivary Glands/embryology , Wnt Signaling Pathway , Submandibular Gland/metabolism , Submandibular Gland/embryology , Trans-Activators/metabolism , Trans-Activators/genetics , Cell Differentiation
3.
iScience ; 27(4): 109366, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38510127

ABSTRACT

Triple-negative breast cancer (TNBC) contributes greatly to mortality of breast cancer, demanding new targetable options. We have shown that TNBC patients have high ΔNp63 expression in tumors. However, the function of ΔNp63 in established TNBC is yet to be explored. In current studies, targeting ΔNp63 with inducible CRISPR knockout and Histone deacetylase inhibitor Quisinostat showed that ΔNp63 is important for tumor progression and metastasis in established tumors by promoting myeloid-derived suppressor cell (MDSC) survival through tumor necrosis factor alpha. Decreasing ΔNp63 levels are associated with decreased CD4+ and FOXP3+ T-cells but increased CD8+ T-cells. RNA sequencing analysis indicates that loss of ΔNp63 alters multiple MDSC properties such as lipid metabolism, chemotaxis, migration, and neutrophil degranulation besides survival. We further demonstrated that targeting ΔNp63 sensitizes chemotherapy. Overall, we showed that ΔNp63 reprograms the MDSC-mediated immunosuppressive functions in TNBC, highlighting the benefit of targeting ΔNp63 in chemotherapy-resistant TNBC.

4.
Biology (Basel) ; 13(2)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38392348

ABSTRACT

Follistatin (FST) is a potent neutralizer of the transforming growth factor-ß superfamily and is associated with normal cellular programs and various hallmarks of cancer, such as proliferation, migration, angiogenesis, and immune evasion. The aberrant expression of FST by solid tumors is a well-documented observation, yet how FST influences tumor progression and therapy response remains unclear. The recent surge in omics data has revealed new insights into the molecular foundation underpinning tumor heterogeneity and its microenvironment, offering novel precision medicine-based opportunities to combat cancer. In this review, we discuss these recent FST-centric studies, thereby offering an updated perspective on the protean role of FST isoforms in shaping the complex cellular ecosystem of tumors and in mediating drug resistance.

5.
Cancer Cell ; 42(3): 413-428.e7, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38402609

ABSTRACT

KRASG12C inhibitors (adagrasib and sotorasib) have shown clinical promise in targeting KRASG12C-mutated lung cancers; however, most patients eventually develop resistance. In lung patients with adenocarcinoma with KRASG12C and STK11/LKB1 co-mutations, we find an enrichment of the squamous cell carcinoma gene signature in pre-treatment biopsies correlates with a poor response to adagrasib. Studies of Lkb1-deficient KRASG12C and KrasG12D lung cancer mouse models and organoids treated with KRAS inhibitors reveal tumors invoke a lineage plasticity program, adeno-to-squamous transition (AST), that enables resistance to KRAS inhibition. Transcriptomic and epigenomic analyses reveal ΔNp63 drives AST and modulates response to KRAS inhibition. We identify an intermediate high-plastic cell state marked by expression of an AST plasticity signature and Krt6a. Notably, expression of the AST plasticity signature and KRT6A at baseline correlates with poor adagrasib responses. These data indicate the role of AST in KRAS inhibitor resistance and provide predictive biomarkers for KRAS-targeted therapies in lung cancer.


Subject(s)
Acetonitriles , Carcinoma, Squamous Cell , Lung Neoplasms , Piperazines , Pyrimidines , Animals , Mice , Humans , Proto-Oncogene Proteins p21(ras) , Genes, ras , Mutation
6.
Front Immunol ; 14: 1208200, 2023.
Article in English | MEDLINE | ID: mdl-37691956

ABSTRACT

Introduction: Ets1 is a lymphoid-enriched transcription factor that regulates B- and Tcell functions in development and disease. Mice that lack Ets1 (Ets1 KO) develop spontaneous autoimmune disease with high levels of autoantibodies. Naïve CD4 + T cells isolated from Ets1 KO mice differentiate more readily to Th17 cells that secrete IL-17, a cytokine implicated in autoimmune disease pathogenesis. To determine if increased IL-17 production contributes to the development of autoimmunity in Ets1 KO mice, we crossed Ets1 KO mice to mice lacking the IL-17 receptor A subunit (IL17RA KO) to generate double knockout (DKO) mice. Methods: In this study, the status of the immune system of DKO and control mice was assessed utilizing ELISA, ELISpot, immunofluorescent microscopy, and flow cytometric analysis of the spleen, lymph node, skin. The transcriptome of ventral neck skin was analyzed through RNA sequencing. S. aureus clearance kinetics in in exogenously infected mice was conducted using bioluminescent S. aureus and tracked using an IVIS imaging experimental scheme. Results: We found that the absence of IL17RA signaling did not prevent or ameliorate the autoimmune phenotype of Ets1 KO mice but rather that DKO animals exhibited worse symptoms with striking increases in activated B cells and secreted autoantibodies. This was correlated with a prominent increase in the numbers of T follicular helper (Tfh) cells. In addition to the autoimmune phenotype, DKO mice also showed signs of immunodeficiency and developed spontaneous skin lesions colonized by Staphylococcus xylosus. When DKO mice were experimentally infected with Staphylococcus aureus, they were unable to clear the bacteria, suggesting a general immunodeficiency to staphylococcal species. γδ T cells are important for the control of skin staphylococcal infections. We found that mice lacking Ets1 have a complete deficiency of the γδ T-cell subset dendritic epidermal T cells (DETCs), which are involved in skin woundhealing responses, but normal numbers of other skin γδ T cells. To determine if loss of DETC combined with impaired IL-17 signaling might promote susceptibility to staph infection, we depleted DETC from IL17RA KO mice and found that the combined loss of DETC and impaired IL-17 signaling leads to an impaired clearance of the infection. Conclusions: Our studies suggest that loss of IL-17 signaling can result in enhanced autoimmunity in Ets1 deficient autoimmune-prone mice. In addition, defects in wound healing, such as that caused by loss of DETC, can cooperate with impaired IL-17 responses to lead to increased susceptibility to skin staph infections.


Subject(s)
Autoimmune Diseases , Proto-Oncogene Protein c-ets-1 , Receptors, Interleukin-17 , Staphylococcal Infections , Animals , Mice , Autoantibodies , Autoimmune Diseases/genetics , Autoimmunity , Interleukin-17 , Receptors, Interleukin-17/metabolism , Staphylococcus aureus , Proto-Oncogene Protein c-ets-1/metabolism
7.
NAR Cancer ; 5(3): zcad038, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37492374

ABSTRACT

Although numerous putative oncogenes have been associated with the etiology of head and neck squamous cell carcinoma (HNSCC), the mechanisms by which these oncogenes and their downstream targets mediate tumor progression have not been fully elucidated. We performed an integrative analysis to identify a crucial set of targets of the oncogenic transcription factor p63 that are common across multiple transcriptomic datasets obtained from HNSCC patients, and representative cell line models. Notably, our analysis revealed FST which encodes follistatin, a secreted glycoprotein that inhibits the transforming growth factor TGFß/activin signaling pathways, to be a direct transcriptional target of p63. In addition, we found that FST expression is also driven by epidermal growth factor receptor EGFR signaling, thus mediating a functional link between the TGF-ß and EGFR pathways. We show through loss- and gain-of-function studies that FST predominantly imparts a tumor-growth and migratory phenotype in HNSCC cells. Furthermore, analysis of single-cell RNA sequencing data from HNSCC patients unveiled cancer cells as the dominant source of FST within the tumor microenvironment and exposed a correlation between the expression of FST and its regulators with immune infiltrates. We propose FST as a prognostic biomarker for patient survival and a compelling candidate mediating the broad effects of p63 on the tumor and its associated microenvironment.

8.
Cancers (Basel) ; 15(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36672394

ABSTRACT

Oral squamous cell carcinoma (OSCC) is the most common malignancy of the oral cavity and is linked to tobacco exposure, alcohol consumption, and human papillomavirus infection. Despite therapeutic advances, a lack of molecular understanding of disease etiology, and delayed diagnoses continue to negatively affect survival. The identification of oncogenic drivers and prognostic biomarkers by leveraging bulk and single-cell RNA-sequencing datasets of OSCC can lead to more targeted therapies and improved patient outcomes. However, the generation, analysis, and continued utilization of additional genetic and genomic tools are warranted. Tobacco-induced OSCC can be modeled in mice via 4-nitroquinoline 1-oxide (4NQO), which generates a spectrum of neoplastic lesions mimicking human OSCC and upregulates the oncogenic master transcription factor p63. Here, we molecularly characterized established mouse 4NQO treatment-derived OSCC cell lines and utilized RNA and chromatin immunoprecipitation-sequencing to uncover the global p63 gene regulatory and signaling network. We integrated our p63 datasets with published bulk and single-cell RNA-sequencing of mouse 4NQO-treated tongue and esophageal tumors, respectively, to generate a p63-driven gene signature that sheds new light on the role of p63 in murine OSCC. Our analyses reveal known and novel players, such as COTL1, that are regulated by p63 and influence various oncogenic processes, including metastasis. The identification of new sets of potential biomarkers and pathways, some of which are functionally conserved in human OSCC and can prognosticate patient survival, offers new avenues for future mechanistic studies.

9.
Cell Death Differ ; 30(2): 515-526, 2023 02.
Article in English | MEDLINE | ID: mdl-36526896

ABSTRACT

Salivary glands consist of several epithelial cell types of distinct lineages and functional characteristics that are established by directed differentiation programs of resident stem and progenitor cells. We have shown that ΔNp63, a crucial transcriptional regulator of stem/progenitor cells, is enriched in both the basal and myoepithelial cell (MEC) populations and that ΔNp63 positive cells maintain all the descendent epithelial cell lineages of the adult mouse salivary glands (mSGs). Although this pivotal role of ΔNp63 in driving the broader epithelial cell fate and identity in the mSG has been demonstrated, how ΔNp63 functions specifically in the commitment and differentiation of the MEC population is less understood. Using multiple genetic mouse models that allow for cell tracing, we show that ΔNp63 is critical in maintaining and renewing MECs, in part through the transcriptional regulation of Acta2 gene expression, a defining marker of this cell population. We demonstrate that during adult mSG homeostasis, ΔNp63 enriched MECs function as bipotent progenitor cells that maintain not only the MEC population, but also the distinctly different ductal cell lineages. The fidelity of this process is dependent on ΔNp63 expression, since MEC-specific ablation of ΔNp63 results in altered MEC differentiation and affects cellular plasticity resulting in aberrant differentiation of the intercalated ducts and acinar cells. In contrast, we find that the contribution of MECs to ductal and acinar cell regeneration following severe injury is independent of ΔNp63. Our observations offer new insights into cellular mechanisms driving MEC fate choices and differentiation programs in the context of salivary gland homeostasis and in response to injury and regeneration. Long term, these findings have implications for better treatment of salivary gland dysfunction through stem cell-based approaches.


Subject(s)
Epithelial Cells , Salivary Glands , Trans-Activators , Animals , Mice , Cell Differentiation , Cell Lineage , Epithelial Cells/metabolism , Salivary Glands/metabolism , Stem Cells , Trans-Activators/metabolism
10.
Front Oncol ; 12: 892207, 2022.
Article in English | MEDLINE | ID: mdl-35912202

ABSTRACT

Traditional analysis of genomic data from bulk sequencing experiments seek to group and compare sample cohorts into biologically meaningful groups. To accomplish this task, large scale databases of patient-derived samples, like that of TCGA, have been established, giving the ability to interrogate multiple data modalities per tumor. We have developed a computational strategy employing multimodal integration paired with spectral clustering and modern dimension reduction techniques such as PHATE to provide a more robust method for cancer sub-type classification. Using this integrated approach, we have examined 514 Head and Neck Squamous Carcinoma (HNSC) tumor samples from TCGA across gene-expression, DNA-methylation, and microbiome data modalities. We show that these approaches, primarily developed for single-cell sequencing can be efficiently applied to bulk tumor sequencing data. Our multimodal analysis captures the dynamic heterogeneity, identifies new and refines subtypes of HNSC, and orders tumor samples along well-defined cellular trajectories. Collectively, these results showcase the inherent molecular complexity of tumors and offer insights into carcinogenesis and importance of targeted therapy. Computational techniques as highlighted in our study provide an organic and powerful approach to identify granular patterns in large and noisy datasets that may otherwise be overlooked.

11.
NAR Cancer ; 4(2): zcac017, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35664541

ABSTRACT

Head and Neck Squamous Cell Carcinoma (HNSCC) is a heterogeneous disease with relatively high morbidity and mortality rates. The lack of effective therapies, high recurrence rates and drug resistance driven in part, by tumor heterogeneity, contribute to the poor prognosis for patients diagnosed with this cancer. This problem is further exacerbated by the fact that key regulatory factors contributing to the disease diversity remains largely elusive. Here, we have identified EHF as an important member of the ETS family of transcription factors that is highly expressed in normal oral tissues, but lost during HNSCC progression. Interestingly, HNSCC tumors and cell lines exhibited a dichotomy of high and low EHF expression, and patients whose tumors retained EHF expression showed significantly better prognosis, suggesting a potential tumor suppressive role for EHF. To address this, we have performed gain and loss of function studies and leveraged bulk and single-cell cancer genomic datasets to identify global EHF targets by RNA-sequencing (RNA-seq) and Chromatin Immunoprecipitation and next generation sequencing (ChIP-seq) experiments of HNSCC cell lines. These mechanistic studies have revealed that EHF, acts as a regulator of a broad spectrum of metabolic processes, specifically targeting regulators of redox homeostasis such as NRF2 and SOX2. Our immunostaining results confirm the mutually exclusive expression patterns of EHF and SOX2 in HNSCC tumors and suggest a possible role for these two factors in establishing discrete metabolic states within the tumor microenvironment. Taken together, EHF may serve as a novel prognostic marker for classifying HNSCC patients for actionable and targeted therapeutic intervention.

12.
Front Oncol ; 12: 879054, 2022.
Article in English | MEDLINE | ID: mdl-35712470

ABSTRACT

The complex heterogeneity of head and neck squamous cell carcinoma (HNSCC) reflects a diverse underlying etiology. This heterogeneity is also apparent within Human Papillomavirus-positive (HPV+) HNSCC subtypes, which have distinct gene expression profiles and patient outcomes. One aggressive HPV+ HNSCC subtype is characterized by elevated expression of genes involved in keratinization, a process regulated by the oncogenic transcription factor ΔNp63. Furthermore, the human TP63 gene locus is a frequent HPV integration site and HPV oncoproteins drive ΔNp63 expression, suggesting an unexplored functional link between ΔNp63 and HPV+ HNSCC. Here we show that HPV+ HNSCCs can be molecularly stratified according to ΔNp63 expression levels and derive a ΔNp63-associated gene signature profile for such tumors. We leveraged RNA-seq data from p63 knockdown cells and ChIP-seq data for p63 and histone marks from two ΔNp63high HPV+ HNSCC cell lines to identify an epigenetically refined ΔNp63 cistrome. Our integrated analyses reveal crucial ΔNp63-bound super-enhancers likely to mediate HPV+ HNSCC subtype-specific gene expression that is anchored, in part, by the PI3K-mTOR pathway. These findings implicate ΔNp63 as a key regulator of essential oncogenic pathways in a subtype of HPV+ HNSCC that can be exploited as a biomarker for patient stratification and treatment choices.

13.
Front Immunol ; 12: 729040, 2021.
Article in English | MEDLINE | ID: mdl-34912329

ABSTRACT

Sjögren's Syndrome (SS) is a chronic autoimmune disease of unknown etiology which primarily affects the salivary and lacrimal glands resulting in the loss of secretory function. Treatment options for SS have been hampered due to the lack of a better understanding of the underlying gene regulatory circuitry and the interplay between the myriad pathological cellular states that contribute to salivary gland dysfunction. To better elucidate the molecular nature of SS, we have performed RNA-sequencing analysis of the submandibular glands (SMG) of a well-established primary Sjögren's Syndrome (pSS) mouse model. Our comprehensive examination of global gene expression and comparative analyses with additional SS mouse models and human datasets, have identified a number of important pathways and regulatory networks that are relevant in SS pathobiology. To complement these studies, we have performed single-cell RNA sequencing to examine and identify the molecular and cellular heterogeneity of the diseased cell populations of the mouse SMG. Interrogation of the single-cell transcriptomes has shed light on the diversity of immune cells that are dysregulated in SS and importantly, revealed an activated state of the salivary gland epithelial cells that contribute to the global immune mediated responses. Overall, our broad studies have not only revealed key pathways, mediators and new biomarkers, but have also uncovered the complex nature of the cellular populations in the SMG that are likely to drive the progression of SS. These newly discovered insights into the underlying molecular mechanisms and cellular states of SS will better inform targeted therapeutic discoveries.


Subject(s)
Sjogren's Syndrome/immunology , Submandibular Gland/immunology , Submandibular Gland/pathology , Transcriptome , Animals , Epithelial Cells/immunology , Epithelial Cells/pathology , Gene Expression Profiling , Gene Regulatory Networks , Mice , Single-Cell Analysis , Sjogren's Syndrome/genetics , Sjogren's Syndrome/pathology
15.
Epigenetics Chromatin ; 14(1): 20, 2021 04 17.
Article in English | MEDLINE | ID: mdl-33865440

ABSTRACT

BACKGROUND: ΔNp63 is a master transcriptional regulator playing critical roles in epidermal development and other cellular processes. Recent studies suggest that ΔNp63 functions as a pioneer factor that can target its binding sites within inaccessible chromatin and induce chromatin remodeling. METHODS: In order to examine if ΔNp63 can bind to inaccessible chromatin and to determine if specific histone modifications are required for binding, we induced ΔNp63 expression in two p63-naïve cell lines. ΔNp63 binding was then examined by ChIP-seq and the chromatin at ΔNp63 targets sites was examined before and after binding. Further analysis with competitive nucleosome binding assays was used to determine how ΔNp63 directly interacts with nucleosomes. RESULTS: Our results show that before ΔNp63 binding, targeted sites lack histone modifications, indicating ΔNp63's capability to bind at unmodified chromatin. Moreover, the majority of the sites that are bound by ectopic ΔNp63 expression exist in an inaccessible state. Once bound, ΔNp63 induces acetylation of the histone and the repositioning of nucleosomes at its binding sites. Further analysis with competitive nucleosome binding assays reveal that ΔNp63 can bind directly to nucleosome edges with significant binding inhibition occurring within 50 bp of the nucleosome dyad. CONCLUSION: Overall, our results demonstrate that ΔNp63 is a pioneer factor that binds nucleosome edges at inaccessible and unmodified chromatin sites and induces histone acetylation and nucleosome repositioning.


Subject(s)
Chromatin Assembly and Disassembly , Chromatin , Binding Sites , Histones/metabolism , Nucleosomes
16.
iScience ; 23(9): 101524, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32932139

ABSTRACT

Multipotent ΔNp63-positive cells maintain all epithelial cell lineages of the embryonic and adult salivary gland (SG). However, the molecular mechanisms by which ΔNp63 regulates stem/progenitor (SP) cell populations in the SG remains elusive. To understand the role of ΔNp63 in directing cell fate choices in this gland, we have generated ΔNp63-deleted adult mice and primary salivary cell cultures to probe alterations in SP cell differentiation and function. In parallel, we have leveraged RNA-seq and ChIP-seq-based characterization of the ΔNp63-driven cistrome and scRNA-seq analysis to molecularly interrogate altered SG cellular identities and differentiation states dependent on ΔNp63. Our studies reveal that ablation of ΔNp63 results in a loss of the SP cell population and skewed differentiation that is mediated by Follistatin-dependent dysregulated TGF-ß/Activin signaling. These findings offer new revelations into the SP cell gene regulatory networks that are likely to be relevant for normal or diseased SG states.

17.
Nat Cell Biol ; 22(5): 591-602, 2020 05.
Article in English | MEDLINE | ID: mdl-32284542

ABSTRACT

Triple-negative breast cancer (TNBC) is characterized by a high degree of immune infiltrate in the tumour microenvironment, which may influence the fate of TNBC cells. We reveal that loss of the tumour suppressive transcription factor Elf5 in TNBC cells activates intrinsic interferon-γ (IFN-γ) signalling, promoting tumour progression and metastasis. Mechanistically, we find that loss of the Elf5-regulated ubiquitin ligase FBXW7 ensures stabilization of its putative protein substrate IFN-γ receptor 1 (IFNGR1) at the protein level in TNBC. Elf5low tumours show enhanced IFN-γ signalling accompanied by an increase of immunosuppressive neutrophils within the tumour microenvironment and increased programmed death ligand 1 expression. Inactivation of either programmed death ligand 1 or IFNGR1 elicited a robust anti-tumour and/or anti-metastatic effect. A positive correlation between ELF5 and FBXW7 expression and a negative correlation between ELF5, FBXW7 and IFNGR1 expression in the tumours of patients with TNBC strongly suggest that this signalling axis could be exploited for patient stratification and immunotherapeutic treatment strategies for Elf5low patients with TNBC.


Subject(s)
Cell Proliferation/physiology , DNA-Binding Proteins/metabolism , F-Box-WD Repeat-Containing Protein 7/metabolism , Interferon-gamma/metabolism , Neoplasm Metastasis/pathology , Receptors, Interferon/metabolism , Transcription Factors/metabolism , Triple Negative Breast Neoplasms/metabolism , Animals , Cell Line , Cell Line, Tumor , Female , HEK293 Cells , Humans , Mice , Mice, Inbred BALB C , Signal Transduction/physiology , Tumor Microenvironment/physiology , Interferon gamma Receptor
18.
Front Immunol ; 11: 606268, 2020.
Article in English | MEDLINE | ID: mdl-33488608

ABSTRACT

Primary Sjögren's syndrome (pSS) is a systemic autoimmune disease characterized primarily by immune-mediated destruction of exocrine tissues, such as those of the salivary and lacrimal glands, resulting in the loss of saliva and tear production, respectively. This disease predominantly affects middle-aged women, often in an insidious manner with the accumulation of subtle changes in glandular function occurring over many years. Patients commonly suffer from pSS symptoms for years before receiving a diagnosis. Currently, there is no effective cure for pSS and treatment options and targeted therapy approaches are limited due to a lack of our overall understanding of the disease etiology and its underlying pathology. To better elucidate the underlying molecular nature of this disease, we have performed RNA-sequencing to generate a comprehensive global gene expression profile of minor salivary glands from an ethnically diverse cohort of patients with pSS. Gene expression analysis has identified a number of pathways and networks that are relevant in pSS pathogenesis. Moreover, our detailed integrative analysis has revealed a primary Sjögren's syndrome molecular signature that may represent important players acting as potential drivers of this disease. Finally, we have established that the global transcriptomic changes in pSS are likely to be attributed not only to various immune cell types within the salivary gland but also epithelial cells which are likely playing a contributing role. Overall, our comprehensive studies provide a database-enriched framework and resource for the identification and examination of key pathways, mediators, and new biomarkers important in the pathogenesis of this disease with the long-term goals of facilitating earlier diagnosis of pSS and to mitigate or abrogate the progression of this debilitating disease.


Subject(s)
Epithelial Cells/metabolism , Gene Expression Profiling , Gene Regulatory Networks , Salivary Glands, Minor/metabolism , Sjogren's Syndrome/genetics , Transcriptome , Case-Control Studies , Computational Biology , Epithelial Cells/immunology , Female , Humans , Middle Aged , Salivary Glands, Minor/immunology , Sjogren's Syndrome/diagnosis , Sjogren's Syndrome/immunology
19.
Oncogene ; 39(2): 262-277, 2020 01.
Article in English | MEDLINE | ID: mdl-31477832

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is a disease of significant morbidity and mortality and rarely diagnosed in early stages. Despite extensive genetic and genomic characterization, targeted therapeutics and diagnostic markers of HNSCC are lacking due to the inherent heterogeneity and complexity of the disease. Herein, we have generated the global histone mark based epigenomic and transcriptomic cartogram of SCC25, a representative cell type of mesenchymal HNSCC and its normal oral keratinocyte counterpart. Examination of genomic regions marked by differential chromatin states and associated with misregulated gene expression led us to identify SCC25 enriched regulatory sequences and transcription factors (TF) motifs. These findings were further strengthened by ATAC-seq based open chromatin and TF footprint analysis which unearthed Krüppel-like Factor 4 (KLF4) as a potential key regulator of the SCC25 cistrome. We reaffirm the results obtained from in silico and chromatin studies in SCC25 by ChIP-seq of KLF4 and identify ΔNp63 as a co-oncogenic driver of the cancer-specific gene expression milieu. Taken together, our results lead us to propose a model where elevated KLF4 levels sustains the oncogenic state of HNSCC by reactivating repressed chromatin domains at key downstream genes, often by targeting super-enhancers.


Subject(s)
Enhancer Elements, Genetic , Kruppel-Like Transcription Factors/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Transcriptome/genetics , Cell Line, Tumor , Chromatin/genetics , Epigenomics , Gene Expression Regulation, Neoplastic , Histone Code/genetics , Humans , Kruppel-Like Factor 4 , Regulatory Sequences, Nucleic Acid , Squamous Cell Carcinoma of Head and Neck/pathology , Transcription Factors/genetics
20.
FEBS Lett ; 594(6): 973-985, 2020 03.
Article in English | MEDLINE | ID: mdl-31794060

ABSTRACT

The ∆Np63 isoform of the p53-family transcription factor Trp63 is a key regulator of mammary epithelial stem cells that is involved in breast cancer development. To investigate the role of ∆Np63 at different stages of normal mammary gland development, we generated a ∆Np63-inducible conditional knockout (cKO) mouse model. We demonstrate that the deletion of ∆Np63 at puberty results in depletion of mammary stem cell-enriched basal cells, reduces expression of E-cadherin and ß-catenin, and leads to a closed ductal lumen. RNA-sequencing analysis reveals reduced expression of oxidative phosphorylation (OXPHOS)-associated proteins and desmosomal polarity proteins. Functional assays show reduced numbers of mitochondria in the mammary epithelial cells of ΔNp63 cKO compared to wild-type, supporting the reduced OXPHOS phenotype. These findings identify a novel role for ∆Np63 in cellular metabolism and mammary epithelial cell polarity.


Subject(s)
Cell Polarity , Mammary Glands, Animal/metabolism , Sexual Maturation , Stem Cells/metabolism , Trans-Activators/metabolism , Animals , Cadherins/genetics , Cadherins/metabolism , Female , Mice , Mice, Knockout , Trans-Activators/genetics , beta Catenin/genetics , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL