Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Dent Med Probl ; 61(3): 353-362, 2024.
Article in English | MEDLINE | ID: mdl-38949834

ABSTRACT

BACKGROUND: Despite the superiority of glass-ionomer cements (GICs) over composites in treating white spot lesions (WSLs), there is still a concern about their preventive and antibacterial properties. Efforts have been made to improve the strength of their bond to demineralized enamel, fluoride release and antibacterial properties by adding nanoparticles of chitosan, which seems to be a promising method. OBJECTIVES: The aim of the present study was to assess the antibacterial effect, the microshear bond strength (µSBS) to enamel at the WSL area, and the fluoride and nano-chitosan release after modifying the polyacrylic acid liquid phase of a traditional GIC with different nano-chitosan volumes. MATERIAL AND METHODS: A total of 120 samples were prepared, and then divided into 4 groups (n = 30): G1 - non-modified GIC, which served as a control group, while G2, G3 and G4 were modified with different nano-chitosan volumes (50%, 100% and 150%, respectively). Microshear bond strength was assessed using a universal testing machine (UTM) after storage in distilled water for 24 h. Fluoride and nanochitosan release was measured with the use of spectrophotometers at different time points (initially, and at 1 h, 24 h, 48 h, 72 h, 1 week, 2 weeks, 3 weeks, and 6 weeks) after storage in distilled water. The antibacterial effect against the Streptococcus aureus strain was assessed with the agar diffusion test. The data was statistically analyzed. RESULTS: After 24-hour storage, G2 recorded a slight, yet non-significant, increase in the µSBS values (4.1 ±0.94 MPa) as compared to G1 (3.9 ±1.30 MPa). With regard to fluoride release, the amount recorded for G1 was significantly greater at the end of the 24-hour storage period (0.70 ±0.30 µmf/cm2) than modified nano-chitosan GIC groups; G1 was followed by G4 (0.54 ±0.34 µmf/cm2). The highest amount of nano-chitosan release after 24-hour storage was noted for G3 (0.85 ±0.00 µmf/cm2). The highest inhibition zone value was recorded for G2. CONCLUSIONS: Glass-ionomer cement modified with 50% nano-chitosan was shown to positively affect µSBS and the antibacterial effect, while modification with 150% nano-chitosan significantly increased fluoride release.


Subject(s)
Anti-Bacterial Agents , Chitosan , Dental Caries , Glass Ionomer Cements , Chitosan/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Glass Ionomer Cements/chemistry , Glass Ionomer Cements/pharmacology , Dental Caries/prevention & control , In Vitro Techniques , Fluorides/administration & dosage , Humans , Nanoparticles , Shear Strength , Dental Enamel/drug effects , Materials Testing , Dental Bonding
2.
Nanomaterials (Basel) ; 11(9)2021 Sep 19.
Article in English | MEDLINE | ID: mdl-34578757

ABSTRACT

Systematic investigations involving laboratory, analytical, and field trials were carried out to obtain the most efficient adsorbent for the removal of congo red (CR) dye from industrial effluent. Modification of the zeolite (Z) by the Acanthophora Spicifera algae (AS; marine algae) was evaluated in terms of adsorption capability of the zeolite to remove CR dye from aqueous solution. The zeolite/algae composite (ZAS) was fabricated using the wet impregnation technique. The AS, Z, and the synthesized ZAS composite were analyzed utilizing various characterization techniques. The newly synthesized ZAS composite has an adsorption capacity that is significantly higher than that of Z and AS, particularly at low CR concentrations. Batch experiments were carried out to explore the effects of different experimental factors, as well as the dye adsorption isotherms and kinetics. Owing to the presence of intermolecular interactions, the computational analysis showed that the adsorption of the CR molecule on zeolite surfaces is exothermic, energetically favorable, and spontaneous. Furthermore, growing the zeolite surface area has no discernible effect on the adsorption energies in all configurations. The ZAS composite may be used as a low-cost substitute adsorbent for the removal of anionic dyes from industrial wastewater at lower dye concentrations, according to the experimental results. Adsorption of CR dye onto Z, AS, and ZAS adsorbents was adequately explained by pseudo-second-order kinetics and the Langmuir isotherm. The sorption mechanism was also evaluated using Weber's intra-particle diffusion module. Finally, field testing revealed that the newly synthesized adsorbent was 98.0% efficient at extracting dyes from industrial wastewater, proving the foundation of modern eco-friendly materials that aid in the reuse of industrial wastewater.

SELECTION OF CITATIONS
SEARCH DETAIL