Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters








Database
Language
Publication year range
1.
Biomaterials ; 314: 122866, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39342918

ABSTRACT

The widespread emergence of airborne diseases has transformed our lifestyle, and respirators have become an essential part of daily life. Nevertheless, finding respirators that fit well can be challenging due to the variety of human facial sizes and shapes, potentially compromising protection. In addition, the current respirators do not inform the user of the air quality in case of continuous long-term use. Here, we introduce a smart filtering facepiece respirator incorporating a humidity sensor and pressure sensory feedback for self-fit adjusting and maintaining an adequate fit. The humidity detection sensor uses laser-induced graphene, and the pressure sensor array based on the dielectric elastomeric sponge monitors the respirator contact on the user's face, providing real-time closed-loop feedback and the wearer's fitting status. Those membrane sensors show outstanding performance, such as a low humidity hysteresis of 0.131 % and a precise pressure detection limit of 0.23 ± 0.02 kPa. As a result of the self-fit adjusting mode, the overall fit factor is increased by 10 % on average compared to the commercial respirator. This significant improvement in fit factor, coupled with the innovative design, has the potential to develop next-generation facepiece respirators as essential personal protective equipment.

2.
ACS Appl Mater Interfaces ; 16(29): 37401-37417, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38981010

ABSTRACT

Continuous monitoring of physiological signals from the human body is critical in health monitoring, disease diagnosis, and therapeutics. Despite the needs, the existing wearable medical devices rely on either bulky wired systems or battery-powered devices needing frequent recharging. Here, we introduce a wearable, self-powered, thermoelectric flexible system architecture for wireless portable monitoring of physiological signals without recharging batteries. This system harvests an exceptionally high open circuit voltage of 175-180 mV from the human body, powering the wireless wearable bioelectronics to detect electrophysiological signals on the skin continuously. The thermoelectric system shows long-term stability in performance for 7 days with stable power management. Integrating screen printing, laser micromachining, and soft packaging technologies enables a multilayered, soft, wearable device to be mounted on any body part. The demonstration of the self-sustainable wearable system for detecting electromyograms and electrocardiograms captures the potential of the platform technology to offer various opportunities for continuous monitoring of biosignals, remote health monitoring, and automated disease diagnosis.


Subject(s)
Wearable Electronic Devices , Wireless Technology , Humans , Wireless Technology/instrumentation , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Electric Power Supplies , Electrocardiography/instrumentation , Electromyography/instrumentation , Equipment Design
3.
Biosens Bioelectron ; 254: 116223, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38518561

ABSTRACT

Pursuing accurate, swift, and durable pH sensors is important across numerous fields, encompassing healthcare, environmental surveillance, and agriculture. In particular, the emphasis on real-time pH monitoring during cell cultivation has become increasingly pronounced in the current scientific environment-a crucial element being diligently researched to ensure optimal cell production. Both polyaniline (PANi) and iridium oxide (IrOx) show their worth in pH sensing, yet they come with challenges. Single-PANi-layered pH sensors often grapple with diminished sensitivity and lagging responses, while electrodeposited IrOx structures exhibit poor adhesion, leading to their separation from metallic substrates-a trait undesirable for a consistently stable, long-term pH sensor. This paper introduces a bi-layered PANi-IrOx pH sensor, strategically leveraging the advantages of both materials. The results presented here underscore the sensitivity enhancement of binary-phased framework, faster response time, and more robust structure than prior work. Through this synergistic strategy, we demonstrate the potential of integrating different phases to overcome the inherent constraints of individual materials, setting the stage for advanced pH-sensing solutions.


Subject(s)
Biosensing Techniques , Biosensing Techniques/methods , Cell Culture Techniques , Aniline Compounds/chemistry , Hydrogen-Ion Concentration
4.
Sci Adv ; 10(7): eadk6714, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38354246

ABSTRACT

Achieving large-scale, cost-effective, and reproducible manufacturing of stem cells with the existing devices is challenging. Traditional single-use cell-bag bioreactors, limited by their rigid and single-point sensors, struggle with accuracy and scalability for high-quality cell manufacturing. Here, we introduce a smart bioreactor system that enables multi-spatial sensing for real-time, wireless culture monitoring. This scalable system includes a low-profile, label-free thin-film sensor array and electronics integrated with a flexible cell bag, allowing for simultaneous assessment of culture properties such as pH, dissolved oxygen, glucose, and temperature, to receive real-time feedback for up to 30 days. The experimental results show the accurate monitoring of time-dynamic and spatial variations of stem cells and myoblast cells with adjustable carriers from a plastic dish to a 2-liter cell bag. These advances open up the broad applicability of the smart sensing system for large-scale, lower-cost, reproducible, and high-quality engineered cell manufacturing for broad clinical use.


Subject(s)
Electronics , Wearable Electronic Devices , Cell Culture Techniques , Bioreactors , Stem Cells
5.
Adv Sci (Weinh) ; 11(13): e2307609, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38279514

ABSTRACT

Noncommunicable diseases (NCD), such as obesity, diabetes, and cardiovascular disease, are defining healthcare challenges of the 21st century. Medical infrastructure, which for decades sought to reduce the incidence and severity of communicable diseases, has proven insufficient in meeting the intensive, long-term monitoring needs of many NCD disease patient groups. In addition, existing portable devices with rigid electronics are still limited in clinical use due to unreliable data, limited functionality, and lack of continuous measurement ability. Here, a wearable system for at-home cardiovascular monitoring of postpartum women-a group with urgently unmet NCD needs in the United States-using a cloud-integrated soft sternal device with conformal nanomembrane sensors is introduced. A supporting mobile application provides device data to a custom cloud architecture for real-time waveform analytics, including medical device-grade blood pressure prediction via deep learning, and shares the results with both patient and clinician to complete a robust and highly scalable remote monitoring ecosystem. Validated in a month-long clinical study with 20 postpartum Black women, the system demonstrates its ability to remotely monitor existing disease progression, stratify patient risk, and augment clinical decision-making by informing interventions for groups whose healthcare needs otherwise remain unmet in standard clinical practice.


Subject(s)
Mobile Applications , Noncommunicable Diseases , Wearable Electronic Devices , Female , Humans , Monitoring, Physiologic
SELECTION OF CITATIONS
SEARCH DETAIL