Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Langmuir ; 40(41): 21407-21426, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39370641

ABSTRACT

Antisense medications treat diseases that cannot be treated using traditional pharmacological technologies. Nucleotide monomers of bare and phosphorothioate (PS)-modified LNA, N-MeO-amino-BNA, 2',4'-BNANC[NH], 2',4'-BNANC[NMe], and N-Me-aminooxy-BNA antisense modifications were considered for a detailed DFT-based quantum chemical study to estimate their molecular-level structural and electronic properties. Oligomer hybrid duplex stability is described by performing an elaborate MD simulation study by incorporating the PS-LNA and PS-BNA antisense modifications onto 14-mer ASO/RNA hybrid gapmer type duplexes targeting protein PTEN mRNA nucleic acid sequence (5'-CTTAGCACTGGCCT-3'/3'-GAAUCGUGACCGGA-5'). Replica sets of MD simulations were performed accounting to two data sets, each set simulated for 1 µs simulation time. Bulk properties of oligomers are regulated by the chemical properties of their monomers. As such, the primary goal of this work focused on establishing an organized connection between the monomeric BNA nucleotide's electronic effects observed in DFT studies and the macroscopic behavior of the BNA antisense oligomers, as observed in MD simulations. The results from this study predicted that spatial orientation of MO-isosurfaces of the BNA nucleotides are concentrated in the nucleobase region. These BNA nucleotides may become less accessible for various electronic interactions when coupled as ASOs forming duplexes with target RNAs and when the ASO/RNA duplexes further bind with the RNase H. Understanding such electronic interactions is crucial to design superior antisense modifications with specific electronic properties. Also, for the particular nucleic acid sequence solvation of the duplexes although were higher compared to the natural oligonucleotides, their binding energies being relatively lower may lead to decreased antisense activity compared to existing analogs such as the LNAs and MOEs. Fine tuning these BNAs to obtain superior binding affinity is thus a necessity.


Subject(s)
Molecular Dynamics Simulation , Oligonucleotides, Antisense , Oligonucleotides, Antisense/chemistry , RNA/chemistry , Density Functional Theory , Nucleic Acid Conformation , Oligonucleotides/chemistry
2.
J Membr Biol ; 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39240374

ABSTRACT

G-Protein-Coupled Receptors (GPCRs) make up around 3-4% of the human genome and are the targets of one-third of FDA-approved drugs. GPCRs typically exist as monomers but also aggregate to form higher-order oligomers, including dimers. ß2AR, a pharmacologically relevant GPCR, is known to be targeted for the treatment of asthma and cardiovascular diseases. The activation of ß2AR at the dimer level remains under-explored. In the current study, molecular dynamics (MD) simulations have been performed to understand activation-related structural changes in ß2AR at the dimer level. The transition from inactive to active and vice versa has been studied by starting the simulations in the apo, agonist-bound, and inverse agonist-bound ß2AR dimers for PDB ID: 2RH1 and PDB ID: 3P0G, respectively. A cumulative total of around 21-µs simulations were performed. Residue-based distances, RMSD, and PCA calculations suggested that either of the one monomer attained activation-related features for the apo and agonist-bound ß2AR dimers. The TM5 and TM6 helices within the two monomers were observed to be in significant variation in all the simulations. TM5 bulge and proximity of TM2 and TM7 helices may be contributing to one of the early events in activation. The dimeric interface between TM1 and helix 8 were observed to be well maintained in the apo and agonist-bound simulations. The presence of inverse agonists favored inactive features in both the monomers. These key features of activation known for monomers were observed to have an impact on ß2AR dimers, thereby providing an insight into the oligomerization mechanism of GPCRs.

3.
Heliyon ; 10(16): e36161, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39247361

ABSTRACT

KRAS protein is known to be frequently mutated in various cancers. The most common mutations being at position 12, 13 and 61. The positions 12 and 13 form part of the phosphate binding region (P-loop) of KRAS. Owing to mutation, the protein remains in continuous active state and affects the normal cellular process. Understanding the structural changes owing to mutations in GDP-bound (inactive state) and GTP-bound (active state) may help in the design of better therapeutics. To understand the structural flexibility due to the mutations specifically located at P-loop regions (G12D, G12V and G13D), extensive molecular dynamics simulations (24 µs) have been carried for both inactive (GDP-bound) and active (GTP-bound) structures for the wild type and these mutants. The study revealed that the local structural changes at the site of mutations allosterically guide changes in distant regions of the protein through hydrogen bond and hydrophobic signalling network. The dynamic cross correlation analysis and the comparison of the correlated motions among different systems manifested that changes in SW-I, SW-II, α3 and the loop preceding α3 affects the interactions of GDP/GTP with different regions of the protein thereby affecting its hydrolysis. Further, the Markov state modelling analysis confirmed that the mutations, especially G13D imparts rigidity to structure compared to wild type and thus limiting its conformational state in either intermediate state or active state. The study suggests that along with SW-I and SW-II regions, the loop region preceding the α3 helix and α3 helix are also involved in affecting the hydrolysis of nucleotides and may be considered while designing therapeutics against KRAS.

4.
Curr Res Struct Biol ; 7: 100151, 2024.
Article in English | MEDLINE | ID: mdl-38881558

ABSTRACT

The COVID-19 pandemic in the later phase showed the presence of the B.1.1.529 variant of the SARS-CoV-2 designated as Omicron. AYUSH-64 a poly herbal drug developed by Central Council for Research in Ayurvedic Sciences (CCRAS) has been recommended by Ministry of Ayush in asymptomatic, mild to moderate COVID-19 patients. One of the earlier, in-silico study has shown the binding of the constituents of AYUSH-64 to the main protease (Mpro) of the SARS-CoV-2. This study enlisted four phytochemicals of AYUSH-64, which were found to have significant binding with the Mpro. In continuation to the same, the current study proposes to understand the binding of these four phytochemicals to main protease (Mpro) and receptor binding domain (RBD) of spike protein of the Omicron variant. An enhanced molecular docking methodology, namely, ensemble docking has been used to find the most efficiently binding phytochemical. Using molecular dynamics (MD) simulations and clustering approach it was observed that the Mpro and RBD Spike of Omicron variant of SARS-CoV-2 in complex with human ACE2 tends to attain 4 and 8 conformational respectively. Based on the docking studies, the best binding phytochemical of the AYUSH-64, akummicine N-oxide was selected for MD simulations. MD simulations of akummicine N-oxide bound to omicron variant of Mpro and RBD Spike-ACE complex was performed. The conformational, interaction and binding energy analysis suggested that the akummicine N-oxide binds well with Mpro and RBD Spike-ACE2 complex. The interaction between RBD Spike and ACE2 was observed to weaken in the presence of akummicine N-oxide. Hence, it can be inferred that, these phytochemicals from AYUSH-64 formulation may have the potential to act against the Omicron variant of SARS-CoV-2.

5.
Int J Biol Macromol ; 274(Pt 2): 133289, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908639

ABSTRACT

Captopril is a thiol drug, widely used for the management of hypertension and cardiovascular diseases. Reactive thiols are found to covalently modify the cysteines of plasma proteins and affect their structure and function. Human serum albumin (HSA) is prone to undergo modification by various low molecular weight compounds, including drugs. Cysteine34 (Cys34) in HSA has a free thiol group with antioxidant properties, considered to be the most redox-sensitive amino acid in plasma. Through mass-spectrometric analysis, we demonstrate for the first time that captopril forms a disulfide adduct at Cys34 residue and increases the protease susceptibility of HSA to trypsin. As evidenced by our biophysical and electron microscopy studies, HSA undergoes structural alteration, aggregation and morphological changes when treated with different captopril concentrations. Molecular dynamics studies further revealed the regions of secondary structural changes in HSA due to disulfide adduct formation by captopril at Cys34. It also elucidated the residues involved in the noncovalent interactions with captopril. It is envisaged that structural change in HSA may influence the efficacy of drug delivery as well as its own biological function. These findings may thus provide significant insights into the field of pharmacology intriguing further investigation into the effects of long-term captopril treatment.


Subject(s)
Captopril , Disulfides , Serum Albumin, Human , Captopril/chemistry , Captopril/pharmacology , Humans , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Disulfides/chemistry , Molecular Dynamics Simulation , Cysteine/chemistry , Trypsin/chemistry , Trypsin/metabolism
6.
J Ayurveda Integr Med ; 15(3): 100986, 2024.
Article in English | MEDLINE | ID: mdl-38805854

ABSTRACT

BACKGROUND: Shyonaka (Oroxylum indicum Vent) is widely used in Ayurveda and in ethnomedical practice for the treatment of inflammation, pain, diarrhea, non-healing ulcers, and cancer. Owing to the high prevalence of Epstein-Barr virus (EBV) infection in Nasopharyngeal carcinoma (NPC) patients, simultaneous targeting of proteins involved in both EBV replication and NPC proliferation might help to manage the disease effectively. OBJECTIVES: This study is designed to identify potential dual targeting inhibitors from Oroxylum indicum having the potential to inhibit both EBV and NPC. This study also attempted quantitative analysis of Shyonaka Bark Decoction (SBD) to confirm the presence of Baicalein and Chrysin which are predominant marker compounds of Shyonaka. METHODOLOGY: The HPLC analysis of stem bark and root bark of Oroxylum indicum was done to estimate the presence of marker compounds Baicalein and Chrysalin. The in-silico analysis included ADMET analysis followed by molecular docking of known compounds from Oroxylum indicum (retrieved from IMPPAT database) onto the target proteins of EBV (BHRF1, NEC1, dUTPase, Uracil DNA glycosylase) and NPC (COX-2, EGFR, and MDM2) using DOCK6 tool. Further validations were done using the molecular dynamics simulations of top screened molecules onto the selected target proteins using AMBER20 package and their corresponding MMGBSA binding free-energy values were calculated. RESULTS: The molecular docking revealed that the key molecules from the plant, scutellarein 7-rutinoside (S7R), scutellarin (SCU) and 6-hydroxyluteolin, Baicalein and 5,7-Dihydroxy-2-phenyl-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-4-one (57D) are effectively intervening with the target proteins of EBV, one of the key causative factors of NPC and the NPC specific targets which have the potential to reduce tumor size and other consequences of NPC. The molecular dynamics simulations of S7R, Baicalein and 57D, Baicalein with MDM-2 protein and dUTPase protein, respectively, showed stable interactions between them which were further assessed by the binding energy calculations. CONCLUSION: Overall, the in-silico evaluation of these phytochemicals with target proteins indicates their potential to inhibit both EBV and NPC which needs further in-vitro and in-vivo validations.

7.
Curr Res Struct Biol ; 7: 100115, 2024.
Article in English | MEDLINE | ID: mdl-38188543

ABSTRACT

KRAS activation is known to be modulated by a guanine nucleotide exchange factor (GEF), namely, Son of Sevenless1 (SOS1). SOS1 facilitates the exchange of GDP to GTP thereby leading to activation of KRAS. The binding of GDP/GTP to KRAS at the REM/allosteric site of SOS1 regulates the activation of KRAS at CDC25/catalytic site by facilitating its exchange. Different aspects of the allosteric activation of KRAS through SOS1 are still being explored. To understand the SOS1 mediated activation of KRAS, molecular dynamics simulations for a total of nine SOS1 complexes (KRAS-SOS1-KRAS) were performed. These nine systems comprised different combinations of KRAS-bound nucleotides (GTP/GDP) at REM and CDC25 sites of SOS1. Various conformational and thermodynamic parameters were analyzed for these simulation systems. MMPBSA free energy analysis revealed that binding at CDC25 site of SOS1 was significantly low for GDP-bound KRAS as compared to that of GTP-bound KRAS. It was observed that presence of either GDP/GTP bound KRAS at the REM site of SOS1 affected the activation related changes in the KRAS present at CDC25 site. The conformational changes at the catalytic site of SOS1 resulting from GDP/GTP-bound KRAS at the allosteric changes may hint at KRAS activation through different pathways (slow/fast/rare). The allosteric effect on activation of KRAS at CDC25 site may be due to conformations adopted by switch-I, switch-II, beta2 regions of KRAS at REM site. The effect of structural rearrangements occurring at allosteric KRAS may have led to increased interactions between SOS1 and KRAS at both the sites. The SOS1 residues involved in these important interactions with KRAS at the REM site were R694, S732 and K735. Whereas the ones interacting with KRAS at CDC25 site were S807, W809 and K814. This may suggest the crucial role of these residues in guiding the allosteric activation of KRAS at CDC25 site. The conformational shifts observed in the switch-I, switch-II and alpha3 regions of KRAS at CDC25 site may be attributed to be a part of allosteric activation. The binding affinities, interacting residues and conformational dynamics may provide an insight into development of inhibitors targeting the SOS1 mediated KRAS activation.

8.
RSC Adv ; 14(6): 4201-4220, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38292268

ABSTRACT

Different types of chemicals and products may exhibit various health risks when administered into the human body. For toxicity reasons, the number of new drugs entering the market through the conventional drug development process has been reduced over the years. However, with the advent of big data and artificial intelligence, machine learning techniques have emerged as a potential solution for predicting toxicity and ensuring efficient drug development and chemical safety. An ML model for toxicity prediction can reduce experimental costs and time while addressing ethical concerns by drastically reducing the need for animals and clinical trials. Herein, MolToxPred, an ML-based tool, has been developed using a stacked model approach to predict the potential toxicity of small molecules and metabolites. The stacked model consists of random forest, multi-layer perceptron, and LightGBM as base classifiers and Logistic Regression as the meta classifier. For training and validation purposes, a comprehensive set of toxic and non-toxic molecules is curated. Different structural and physicochemical-based features in the form of molecular descriptors and fingerprints were employed. MolToxPred utilizes a comprehensive feature selection process and optimizes its hyperparameters through Bayesian optimization with stratified 5-fold cross-validation. In the evaluation phase, MolToxPred achieved an AUROC of 87.76% on the test set and 88.84% on an external validation set. The McNemar test was used as the post-hoc test to determine if the stacked models' performance was significantly different compared to the base learners. The developed stacked model outperformed its base classifiers and an existing tool in the literature, reaffirming its better performance. The hypothesis is that the incorporation of a diverse set of data, the subsequent feature selection, and a stacked ensemble approach give MolToxPred the edge over other methods. In addition to this, an attempt has been made to identify structural alerts responsible for endpoints of the Tox21 data to determine the association of a molecule with a plausible downstream pathway of action. MolToxPred may be helpful for drug discovery and regulatory pipelines in pharmaceutical and other industries for in silico toxicity prediction of small molecule candidates.

9.
Comput Biol Chem ; 108: 107994, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38043374

ABSTRACT

Phosphoinositide 3-kinases (PI3Ks) are lipid kinases known to regulate important cellular functions by phosphorylating the inositol ring of inositol-phospholipids (PtdIns) at 3' position. The PI3Kα is a heterodimer and the activation of the catalytic subunit (p110α) is regulated by its regulatory subunit (p85α). The current work deals with studying the activation mechanism of the PI3Kα using multi micro-second molecular dynamic simulations. Structural changes involved in activation mechanism is studied by gradually releasing the inhibitory effects of different domains of regulatory subunit namely, n-terminal SH2 (nSH2) and inter SH2 (iSH2). The observation shows that even in the presence of n-terminal and inter SH2 domain (niSH2) of regulatory subunit, the catalytic domain has some intrinsic activation activity and the presence of c-terminal SH2 (cSH2) domain may be required for complete inhibition. The release of nSH2 domain leads to loss of interactions between iSH2 domain (regulatory subunit) and C2 and kinase domain (catalytic subunit). The study shows that early events in the activation mechanism involve the movement of the ABD domain of the catalytic subunit along with the linker region between ABD and RBD region which may lead to movement of ABD closer to the CLobe of the kinase domain. This movement is essentially as it triggers the rearrangement of CLobe especially the catalytic loop and activation loop which bring catalytic important residues closer to ATP and PIP2(phosphatidylinositol-4,5-bisphosphate). Water mediated interaction analysis reveal that water may be playing an important role in the transfer of phosphate from ATP to PIP2. The study shows that initial signal for release of inhibitory effect of the regulatory subunit might be propagated through the linker region between ABD and RBD through allosteric effect to different regions of the protein. These understanding of early events during the activation mechanism may help in the design of better therapeutic targeting PI3K.


Subject(s)
Phosphatidylinositol 3-Kinase , Phosphatidylinositol 3-Kinases , Phosphatidylinositol 3-Kinases/chemistry , Inositol , Water , Adenosine Triphosphate
10.
RSC Adv ; 13(37): 25778-25796, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37655355

ABSTRACT

The tRNA3Lys, which acts as a primer for human immunodeficiency virus type 1 (HIV-1) reverse transcription, undergoes structural changes required for the formation of a primer-template complex. Small molecules have been targeted against tRNA3Lys to inhibit the primer-template complex formation. The present study aims to understand the kinetics of the conformational landscape spanned by tRNA3Lys in apo form using molecular dynamics simulations and Markov state modeling. The study is taken further to investigate the effect of small molecules like 1,4T and 1,5T on structural conformations and kinetics of tRNA3Lys, and comparative analysis is presented. Markov state modeling of tRNA3Lys apo resulted in three metastable states where the conformations have shown the non-canonical structures of the anticodon loop. Based on analyses of ligand-tRNA3Lys interactions, crucial ion and water mediated H-bonds and free energy calculations, it was observed that the 1,4-triazole more strongly binds to the tRNA3Lys compared to 1,5-triazole. However, the MSM analysis suggest that the 1,5-triazole binding to tRNA3Lys has brought rigidity not only in the binding pocket (TΨC arm, D-TΨC loop) but also in the whole structure of tRNA3Lys. This may affect the easy opening of primer tRNA3Lys required for HIV-1 reverse transcription.

11.
Eur J Pharmacol ; 957: 176028, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37657740

ABSTRACT

Alzheimer's disease (AD) is a devastating neurodegenerative disorder affecting mental ability and interrupts neurocognitive functions. Treating multifactorial conditions of AD with a single-target-directed drug is highly difficult. Thus, a multi-target-directed ligand (MTDL) development strategy has been developed as a promising approach for the treatment of AD. Herein, we have synthesized two novel thiosemicarbazones as MTDLs and reported their bioactivities against diverse neuropathological events involved in AD. In vitro studies revealed that both compounds exhibited promising anticholinesterase activity (AChE, IC50 = 15.98 µM, MZET and IC50 = 30.23 µM, MZMT), well supported by a detailed computational study. Both analogs have shown good thermodynamic behaviour and stability through interactions with characteristic amino acid residues throughout simulation of 100 ns against acetylcholinesterase enzyme. In an electrophysiology assay, these analogs have shown a characteristic inhibitory response against the GluN1-1a + GluN2B subunit of N-methyl-D-aspartate receptors. Pre-treatment of BV-2 microglial cells with MZET effectively decreased nitrite production compared to nitrite produced by lipopolysaccharide-treated cells alone. Further, the effect of MZMT and MZET on autophagy regulation was determined using stably transfected SH-SY5Y neuroblastoma cells. MZET significantly enhanced the autophagy flux in neuroblastoma cells. A significant decrease in copper-catalysed oxidation of amyloid-ß in presence of synthesized thiosemicarbazones was also observed. Collectively, our findings indicated that these analogs have potential as effective anti-AD candidates and can be used as a prototype to develop more safer multi-targeted anti-AD drugs.


Subject(s)
Alzheimer Disease , Neuroblastoma , Thiosemicarbazones , Humans , Alzheimer Disease/drug therapy , Thiosemicarbazones/pharmacology , Ligands , Acetylcholinesterase , Benzaldehydes , Nitrites
12.
ACS Omega ; 8(25): 22382-22405, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37396274

ABSTRACT

Antisense therapeutics treat a wide spectrum of diseases, many of which cannot be addressed with the current drug technologies. In the quest to design better antisense oligonucleotide drugs, we propose five novel LNA analogues (A1-A5) for modifying antisense oligonucleotides and establishing each with the five standard nucleic acids: adenine (A), guanine (G), cytosine (C), thymine (T), and uracil (U). Monomer nucleotides of these modifications were considered for a detailed Density Functional Theory (DFT)-based quantum chemical analysis to determine their molecular-level structural and electronic properties. A detailed MD simulation study was done on a 14-mer ASO (5'-CTTAGCACTGGCCT-3') containing these modifications targeting PTEN mRNA. Results from both molecular- and oligomer-level analysis clearly depicted LNA-level stability of the modifications, the ASO/RNA duplexes maintaining stable Watson-Crick base pairing preferring RNA-mimicking A-form duplexes. Notably, monomer MO isosurfaces for both purines and pyrimidines were majorly distributed on the nucleobase region in modifications A1 and A2 and in the bridging unit in modifications A3, A4, and A5, suggesting that A3/RNA, A4/RNA, and A5/RNA duplexes interact more with the RNase H and solvent environment. Accordingly, solvation of A3/RNA, A4/RNA, and A5/RNA duplexes was higher compared to that of LNA/RNA, A1/RNA, and A2/RNA duplexes. This study has resulted in a successful archetype for creating advantageous nucleic acid modifications tailored for particular needs, fulfilling a useful purpose of designing novel antisense modifications, which may overcome the drawbacks and improve the pharmacokinetics of existing LNA antisense modifications.

13.
J Chem Inf Model ; 62(24): 6449-6461, 2022 12 26.
Article in English | MEDLINE | ID: mdl-35614540

ABSTRACT

The transcription factor p53 is one of the most widely studied cancer proteins. Its temperature-sensitive nature suggests reduction in functionality at physiological temperatures. Temperature-induced conformational variations and their impact on its functional ability still remain unexplored. A total of 20.8 µs molecular dynamics simulations of wildtype p53 in the apo and the DNA-bound states have been performed at 300 K and 310 K. Further, Markov State Modeling (MSM) analyses were performed, considering Cα-Cα distances as reaction coordinates. Filtering of these distances based on correlation with the time-independent components (tICs) resulted in 16 and 32 distances for apo and DNA-bound systems, respectively. Individual MSM analyses using these filtered distances were performed for both p53 systems. These Cα-Cα residue pairs belonged to the N-terminal, S6/7 ß-turn, loop L2, loop L3, and hydrophobic core residues. At physiological temperatures, apo-p53 exhibits exposure of its hydrophobic core, where the temperature-sensitive hotspot residues were also located. This exposure was the result of the S6/7 ß-turn and N-terminal moving apart. In the DNA-bound p53 system, loop L1 attains an open conformation at physiological temperatures, which weakens the DNA binding. It is already known that p53 mutants that lack DNA binding also tend to show similar conformational variations. The S6/7 ß-turn along with the already known functionally important loop L2 may pose as regions to be targeted to overcome the loss in binding of temperature-sensitive wildtype p53. Rescue strategies directed toward these temperature-sensitive regions may be useful to recuperate its strong binding at physiological temperatures.


Subject(s)
DNA , Tumor Suppressor Protein p53 , Temperature , Tumor Suppressor Protein p53/chemistry , Protein Conformation , Protein Domains , DNA/chemistry , Protein Binding , Binding Sites
14.
J Biomol Struct Dyn ; 40(15): 6831-6844, 2022 09.
Article in English | MEDLINE | ID: mdl-33666148

ABSTRACT

cWnt-signalling plays a crucial role in stem cell maintenance and tissue homeostasis. Secreted frizzled-related proteins(SFRP), Wnt inhibitors consist of the N-terminal cysteine rich domain(CRD) and the C-terminal netrin(NTR) domain. SFRP1 binds to the Wnt ligands and frizzled receptors(FZ) either through its SFRP1CRD or through its SFRP1Netrin domains; however, very little is known on these binding affinities. Here, we attempted to understand the interactions and binding affinities of SFRP1-Wnt5B, SFRP1-FZ(2, 3 & 7) and Wnt5B-FZ(2, 3 & 7) that are mainly expressed in murine hair follicle stem cells. SFRP1CRD, SFRP1Netrin, Wnt5B and FZ(2, 3 & 7) structures were built using homology modelling, followed by their molecular dynamics simulations. SFRP1CRD showed lower fluctuation when in complex with FZ2, FZ3 and FZ7 and Wnt5B as compared to SFRP1Netrin using RMSF and RMSD. However, free energy showed SFRP1Netrin was energetically more stable than SFRP1CRD. SFRP1Netrin formed more number of interactions with FZ as compared to SFRP1CRD. Importantly, SFRP1Netrin favoured binding to the FZ receptors(FZ3 > FZ7 > FZ2) as compared to Wnt5B ligand. Conversely, the SFRP1CRD showed more affinity towards the Wnt5B ligand as compared to FZ receptors. Wnt5B showed the best binding affinity with FZ3 followed by SFRP1CRD and SFRP1Netrin. Therefore, SFRP1Netrin can bind to the FZ3 with higher binding affinity and may inhibit non-canonical Wnt-signalling pathway. Our study provides the comprehensive information on the binding affinities among the Wnt5B, SFRP1CRD/Netrin and FZ(2, 3 & 7). Thus, this information might also help in designing novel strategies to inhibit aberrant Wnt-signalling.Communicated by Ramaswamy H. Sarma.


Subject(s)
Frizzled Receptors , Wnt Proteins , Animals , Frizzled Receptors/chemistry , Frizzled Receptors/metabolism , Ligands , Membrane Proteins , Mice , Netrins , Signal Transduction , Wnt Proteins/chemistry , Wnt Proteins/metabolism
15.
J Biomol Struct Dyn ; 40(16): 7230-7244, 2022 10.
Article in English | MEDLINE | ID: mdl-33682633

ABSTRACT

RNA dependent RNA polymerase (RdRP) from positive-stranded RNA viruses has always been a hot target for designing of new drugs. Major class of drugs that are targeted against RdRP are nucleotide analogues. Extensive docking and molecular dynamics study describing the binding of natural nucleotides (NTPs) and its analogues leading to significant structural variation in the RdRP has been presented here. RdRP simulations in its apo, NTP-bound, and analogue-bound form have been performed. Nucleotide analogues included in this study were, favipiravir, galidesivir, lamivudine, ribavirin, remdesivir and sofosbuvir. The conformational flexibility of the RdRP molecule has been explored using principal component (PCA) and Markov state modeling (MSM) analysis. PCA inferred the presence of correlated motions among the conserved motifs of RdRP. Inter-domain distances between the finger and thumb subdomain flanking the nascent RNA template entry site sampled open and closed conformations. The ligand and template binding motifs F and G showed negatively correlated motions. K551, R553, and R555, a part of motif F appear to form strong interactions with the ligand molecules. R836, a primer binding residue was observed to strongly bind to the analogues. MSM analysis helped to extract statistically distinct conformations explored by the RdRP. Ensemble docking of the ligands on the Markov states also suggested the involvement of the above residues in ligand interactions. Markov states obtained clearly demarcated the open/closed conformations of the template entry site. These observations on residues from the conserved motifs involved in binding to the ligands may provide an insight into designing new inhibitors.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , RNA-Dependent RNA Polymerase , Antiviral Agents/chemistry , Humans , Ligands , Nucleotides/metabolism , SARS-CoV-2
16.
J Biomol Struct Dyn ; 40(13): 5996-6012, 2022 08.
Article in English | MEDLINE | ID: mdl-33494645

ABSTRACT

Evaluation of cardiotoxicity potential of new chemical entities (NCEs) has lately become one of the stringent filters in the drug discovery and development process. Cardiotoxicity is caused mainly by the inhibition of human ether-a-go-go related gene (hERG) channel protein. Inhibition of the hERG channel leads to a life-threatening condition known as cardiac arrhythmia. Knowledge of the structural behaviour of the hERG would aid greatly in the design of new drug molecules that do not interact with the protein and add to the safety index. In this study, a computational model for the active-state of hERG was developed. This model was equilibrated by performing the molecular dynamics simulations for 100 ns followed by clustering and selection of a representative structure based on the largest populated cluster. To study the changes in the protein structure on inhibition, three inhibitory ligands, namely, dofetilide, cisapride and terfenadine were docked, followed by molecular dynamics simulations of 200 ns for the apo and each ligand-bound structure. It was observed that docking and simulation studies of the hERG model exhibited noticeable conformational changes in the protein upon ligand-binding. A significant change in the kink of the S6-transmembrane helix was observed. Inter-chain distances between the crucial residues Y652 and F656 (present below the ion-selectivity filter), their side-chain orientation and hydrogen bonding indicated a probable collapse of the pore. These changes may infer the initiation in transition of hERG from an open to an inactive state. Hence, these findings would help in designing compounds devoid of hERG inhibition with reduced cardiotoxicity.Communicated by Ramaswamy H. Sarma.


Subject(s)
Ether-A-Go-Go Potassium Channels , Molecular Dynamics Simulation , Cardiotoxicity/etiology , Ether-A-Go-Go Potassium Channels/chemistry , Ether-A-Go-Go Potassium Channels/genetics , Ether-A-Go-Go Potassium Channels/metabolism , Humans , Ligands , Potassium Channel Blockers/pharmacology , Terfenadine/pharmacology
17.
BioData Min ; 14(1): 36, 2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34325724

ABSTRACT

GenoVault is a cloud-based repository for handling Next Generation Sequencing (NGS) data. It is developed using OpenStack-based private cloud with various services like keystone for authentication, cinder for block storage, neutron for networking and nova for managing compute instances for the Cloud. GenoVault uses object-based storage, which enables data to be stored as objects instead of files or blocks for faster retrieval from different distributed object nodes. Along with a web-based interface, a JavaFX-based desktop client has also been developed to meet the requirements of large file uploads that are usually seen in NGS datasets. Users can store files in their respective object-based storage areas and the metadata provided by the user during file uploads is used for querying the database. GenoVault repository is designed taking into account future needs and hence can scale both vertically and horizontally using OpenStack-based cloud features. Users have an option to make the data shareable to the public or restrict the access as private. Data security is ensured as every container is a separate entity in object-based storage architecture which is also supported by Secure File Transfer Protocol (SFTP) for data upload and download. The data is uploaded by the user in individual containers that include raw read files (fastq), processed alignment files (bam, sam, bed) and the output of variation detection (vcf). GenoVault architecture allows verification of the data in terms of integrity and authentication before making it available to collaborators as per the user's permissions. GenoVault is useful for maintaining the organization-wide NGS data generated in various labs which is not yet published and submitted to public repositories like NCBI. GenoVault also provides support to share NGS data among the collaborating institutions. GenoVault can thus manage vast volumes of NGS data on any OpenStack-based private cloud.

18.
J Mol Graph Model ; 107: 107945, 2021 09.
Article in English | MEDLINE | ID: mdl-34102527

ABSTRACT

In the present study, five novel LNA based antisense modifications have been proposed. A conformational search was carried out using TANGO, followed by geometry optimization using MOPAC. Based on their electronic energies the most stable conformation for each modification was identified. Further, DFT based full geometry optimization on the most stable conformations at the gas phase B3LYP/6-31G(d,p) using a Gaussian03 and single point energy calculations on the optimized structures at the solvent phase B3LYP/6-311G(d,p) level of theory were done to derive their quantum chemical descriptors using the Gaussian09. A comparison of global reactivity descriptors confirmed that the LNA based modifications were the most reactive. Base-pair stability was recorded by observing the binding energies and base-pairing conformations of modified GC base pairs at the B3LYP/6-311G(d,p) level of theory. Molecular dynamics simulations have been performed at the oligomer duplex level by incorporating individual modifications on 20-mer RNA-RNA duplexes using AMBER16. Free energy calculations of duplex structures suggested that incorporation of A2 modification into the RNA-RNA duplex increased the duplex binding affinity similar to LNA. Whereas, the A3 modification showed less binding compared to LNA but improved binding compared to MOE. This computational approach using quantum chemical methods may be very useful to propose better modifications than the existing ones before performing the experiments in the area of antisense technology.


Subject(s)
Oligonucleotides , RNA , Density Functional Theory , Nucleic Acid Conformation
19.
Chem Zvesti ; 75(9): 4625-4648, 2021.
Article in English | MEDLINE | ID: mdl-33994655

ABSTRACT

The S-glycoprotein (Spike) of the SARS-CoV-2 forms a complex with the human transmembrane protein angiotensin-converting enzyme 2 (ACE2) during infection. It forms the first line of contact with the human cell. The FDA-approved drugs and phytochemicals from Indian medicinal plants were explored. Molecular docking and simulations of these molecules targeting the ACE2-Spike complex were performed. Rutin DAB10 and Swertiapuniside were obtained as the top-scored drugs as per the docking protocol. The MD simulations of ligand-free, Rutin DAB10-bound, and Swertiapuniside-bound ACE2-Spike complex revealed abrogation of the hydrogen bonding network between the two proteins. The principal component and dynamic cross-correlation analysis pointed out conformational changes in both the proteins unique to the ligand-bound systems. The interface residues, His34, and Lys353 from ACE2 and Arg403, and Tyr495 from the Spike protein formed significant strong interactions with the ligand molecules, inferring the inhibition of ACE2-Spike complex. Few novel interactions specific to Rutin-DAB10 and Swertiapuniside were also identified. The conformational flexibility of the drug-binding pocket was captured using the RMSD-based clustering of the ligand-free simulations. Ensemble docking was performed wherein the FDA-approved database and phytochemical dataset were docked on each of the cluster representatives of the ACE2-Spike. The phytochemicals identified belonged to Withania somnifera, Swertia chirayita, Tinospora cordifolia and Rutin DAB10, fulvestrant, elbasvir from FDA. Supplementary Information: The online version contains supplementary material available at 10.1007/s11696-021-01680-1.

20.
PLoS One ; 16(5): e0251801, 2021.
Article in English | MEDLINE | ID: mdl-33984041

ABSTRACT

Drug repurposing studies targeting inhibition of RNA dependent RNA polymerase (RdRP) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) have exhibited the potential effect of small molecules. In the present work a detailed interaction study between the phytochemicals from Indian medicinal plants and the RdRP of SARS-CoV-2 has been performed. The top four phytochemicals obtained through molecular docking were, swertiapuniside, cordifolide A, sitoindoside IX, and amarogentin belonging to Swertia chirayita, Tinospora cordifolia and Withania somnifera. These ligands bound to the RdRP were further studied using molecular dynamics simulations. The principal component analysis of these systems showed significant conformational changes in the finger and thumb subdomain of the RdRP. Hydrogen bonding, salt-bridge and water mediated interactions supported by MM-GBSA free energy of binding revealed strong binding of cordifolide A and sitoindoside IX to RdRP. The ligand-interacting residues belonged to either of the seven conserved motifs of the RdRP. These residues were polar and charged amino acids, namely, ARG 553, ARG 555, ASP 618, ASP 760, ASP 761, GLU 811, and SER 814. The glycosidic moieties of the phytochemicals were observed to form favourable interactions with these residues. Hence, these phytochemicals may hold the potential to act as RdRP inhibitors owing to their stability in binding to the druggable site.


Subject(s)
COVID-19 Drug Treatment , Enzyme Inhibitors/pharmacology , Phytochemicals/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2/enzymology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Biological Products/chemistry , Biological Products/pharmacology , Drug Discovery , Enzyme Inhibitors/chemistry , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Phytochemicals/chemistry , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL