Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters








Database
Language
Publication year range
1.
Pestic Biochem Physiol ; 204: 106086, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39277399

ABSTRACT

Actinomycetes have emerged as significant biocontrol resources due to their rich array of bioactive natural products. While much research has historically focused on secondary metabolites isolated from their fermentation broth, there remains a dearth of reports on their volatile organic compounds (VOCs). Here, strain ML27, isolated from soil, was identified as Streptomyces albidoflavus based on morphological features, physiological, biochemical, and molecular characteristics (16S rRNA, atpD, recA, and rpoB gene sequences). VOCs from S. albidoflavus strain ML27 were effectively captured using solid-phase microextraction (SPME) and tentatively identified through gas chromatography-mass spectrometry (GC/MS). Among these compounds, 4-ethyl-1,2-dimethoxybenzene exhibited broad-spectrum antifungal activity and demonstrated efficacy in controlling citrus anthracnose, with a control efficacy of 86.67%. Furthermore, the inhibitory mechanism of 4-ethyl-1,2-dimethoxybenzene against Colletotrichum gloeosporioides was revealed. Results indicated that 4-ethyl-1,2-dimethoxybenzene induced swelling, deformity, and breakage in C. gloeosporioides mycelia, and significantly inhibited spore germination. Transcriptome analysis revealed that 4-ethyl-1,2-dimethoxybenzene inhibited the growth and development of C. gloeosporioides primarily by disrupting energy metabolism and the integrity of the cell wall and membrane. Based on these results, it is promising to develop 4-ethyl-1,2-dimethoxybenzene as a novel biopesticide for controlling citrus anthracnose.


Subject(s)
Colletotrichum , Plant Diseases , Streptomyces , Colletotrichum/drug effects , Streptomyces/metabolism , Streptomyces/genetics , Plant Diseases/microbiology , Plant Diseases/prevention & control , Volatile Organic Compounds/pharmacology , Volatile Organic Compounds/chemistry , Gas Chromatography-Mass Spectrometry , Citrus/microbiology , Anisoles/pharmacology , Anisoles/chemistry , Fungicides, Industrial/pharmacology , Antifungal Agents/pharmacology
2.
Pestic Biochem Physiol ; 202: 105913, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879317

ABSTRACT

Bacterial leaf blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), poses a significant threat to rice cultivation across diverse regions. Growing concerns about pesticide resistance and environmental impact underscore the urgent necessity for eco-friendly biopesticides. Here, the complete genome sequence of Streptomyces albidoflavus strain ML27 revealed substantial antimicrobial activity and secondary metabolite production potential through genome mining. 3,4-dimethoxyphenol (purity 97%) was successfully isolated from the fermentation broth of S. albidoflavus strain ML27, exhibiting broad and pronounced inhibitory effects on the growth of seven different fungi and five tested bacteria. The efficacy of 3,4-dimethoxyphenol in controlling rice bacterial leaf blight was evaluated through pot tests, demonstrating substantial therapeutic (69.39%) and protective (84.53%) effects. Application of 3,4-dimethoxyphenol to Xoo resulted in cells displayed notable surface depressions, wrinkles, distortions, or even ruptures compared to their typical morphology. Transcriptome analysis revealed significant inhibition of membrane structures, protein synthesis and secretion, bacterial secretion system, two-component system, flagellar assembly, as well as various metabolic and biosynthetic pathways by 3,4-dimethoxyphenol. Notably, the down-regulation of the type III secretion system (T3SS) expression was a pivotal finding. Furthermore, validation via quantitative real-time polymerase chain reaction (qRT-PCR) analysis confirmed significant downregulation of 10 genes related to T3SS upon 3,4-dimethoxyphenol treatment. Based on these results, it is promising to develop 3,4-dimethoxyphenol as a novel biopesticide targeting the T3SS of Xoo for controlling bacterial leaf blight in rice.


Subject(s)
Streptomyces , Xanthomonas , Xanthomonas/drug effects , Xanthomonas/genetics , Streptomyces/genetics , Streptomyces/metabolism , Plant Diseases/microbiology , Gene Expression Profiling , Oryza/microbiology , Anti-Bacterial Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL