Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Heliyon ; 10(15): e35751, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170156

ABSTRACT

The analysis of gait kinematics requires to encode and collapse multidimensional information from multiple anatomical elements. In this study, we address this issue by analyzing the joints' coordination during gait, borrowing from the framework of network theory. We recruited twenty-three patients with Parkinson's disease and twenty-three matched controls that were recorded during linear gait using a stereophotogrammetric motion analysis system. The three-dimensional angular velocity of the joints was used to build a kinematic network for each participant, and both global (average whole-body synchronization) and nodal (individual joint synchronization, i.e., nodal strength) were extracted. By comparing the two groups, the results showed lower coordination in patients, both at global and nodal levels (neck, shoulders, elbows, and hips). Furthermore, the nodal strength of the left elbow and right hip in the patients, as well as the average joints' nodal strength were significantly correlated with the clinical motor condition and were predictive of it. Our study highlights the importance of integrating whole-body information in kinematic analyses and the advantages of using network theory. Finally, the identification of altered network properties of specific joints, and their relationship with the motor impairment in the patients, suggests a potential clinical relevance for our approach.

2.
Brain Commun ; 6(2): fcae112, 2024.
Article in English | MEDLINE | ID: mdl-38585670

ABSTRACT

Large-scale brain activity has long been investigated under the erroneous assumption of stationarity. Nowadays, we know that resting-state functional connectivity is characterized by aperiodic, scale-free bursts of activity (i.e. neuronal avalanches) that intermittently recruit different brain regions. These different patterns of activity represent a measure of brain flexibility, whose reduction has been found to predict clinical impairment in multiple neurodegenerative diseases such as Parkinson's disease, amyotrophic lateral sclerosis and Alzheimer's disease. Brain flexibility has been recently found increased in multiple sclerosis, but its relationship with clinical disability remains elusive. Also, potential differences in brain dynamics according to the multiple sclerosis clinical phenotypes remain unexplored so far. We performed a brain dynamics study quantifying brain flexibility utilizing the 'functional repertoire' (i.e. the number of configurations of active brain areas) through source reconstruction of magnetoencephalography signals in a cohort of 25 multiple sclerosis patients (10 relapsing-remitting multiple sclerosis and 15 secondary progressive multiple sclerosis) and 25 healthy controls. Multiple sclerosis patients showed a greater number of unique reconfigurations at fast time scales as compared with healthy controls. This difference was mainly driven by the relapsing-remitting multiple sclerosis phenotype, whereas no significant differences in brain dynamics were found between secondary progressive multiple sclerosis and healthy controls. Brain flexibility also showed a different predictive power on clinical disability according to the multiple sclerosis type. For the first time, we investigated brain dynamics in multiple sclerosis patients through high temporal resolution techniques, unveiling differences in brain flexibility according to the multiple sclerosis phenotype and its relationship with clinical disability.

3.
Sensors (Basel) ; 24(7)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38610512

ABSTRACT

This study examined the stability of the functional connectome (FC) over time using fingerprint analysis in healthy subjects. Additionally, it investigated how a specific stressor, namely sleep deprivation, affects individuals' differentiation. To this aim, 23 healthy young adults underwent magnetoencephalography (MEG) recording at three equally spaced time points within 24 h: 9 a.m., 9 p.m., and 9 a.m. of the following day after a night of sleep deprivation. The findings indicate that the differentiation was stable from morning to evening in all frequency bands, except in the delta band. However, after a night of sleep deprivation, the stability of the FCs was reduced. Consistent with this observation, the reduced differentiation following sleep deprivation was found to be negatively correlated with the effort perceived by participants in completing the cognitive task during sleep deprivation. This correlation suggests that individuals with less stable connectomes following sleep deprivation experienced greater difficulty in performing cognitive tasks, reflecting increased effort.


Subject(s)
Magnetoencephalography , Sleep Deprivation , Young Adult , Humans , Brain , Health Status , Healthy Volunteers
4.
Clin Neurophysiol ; 163: 14-21, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38663099

ABSTRACT

OBJECTIVE: To test the hypothesis that patients affected by Amyotrophic Lateral Sclerosis (ALS) show an altered spatio-temporal spreading of neuronal avalanches in the brain, and that this may related to the clinical picture. METHODS: We obtained the source-reconstructed magnetoencephalography (MEG) signals from thirty-six ALS patients and forty-two healthy controls. Then, we used the construct of the avalanche transition matrix (ATM) and the corresponding network parameter nodal strength to quantify the changes in each region, since this parameter provides key information about which brain regions are mostly involved in the spreading avalanches. RESULTS: ALS patients presented higher values of the nodal strength in both cortical and sub-cortical brain areas. This parameter correlated directly with disease duration. CONCLUSIONS: In this work, we provide a deeper characterization of neuronal avalanches propagation in ALS, describing their spatio-temporal trajectories and identifying the brain regions most likely to be involved in the process. This makes it possible to recognize the brain areas that take part in the pathogenic mechanisms of ALS. Furthermore, the nodal strength of the involved regions correlates directly with disease duration. SIGNIFICANCE: Our results corroborate the clinical relevance of aperiodic, fast large-scale brain activity as a biomarker of microscopic changes induced by neurophysiological processes.


Subject(s)
Amyotrophic Lateral Sclerosis , Magnetoencephalography , Humans , Amyotrophic Lateral Sclerosis/physiopathology , Amyotrophic Lateral Sclerosis/diagnosis , Female , Male , Middle Aged , Magnetoencephalography/methods , Aged , Adult , Brain Waves/physiology , Brain/physiopathology
5.
Sci Rep ; 14(1): 1976, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38263324

ABSTRACT

The brain operates in a flexible dynamic regime, generating complex patterns of activity (i.e. neuronal avalanches). This study aimed at describing how brain dynamics change according to menstrual cycle (MC) phases. Brain activation patterns were estimated from resting-state magnetoencephalography (MEG) scans, acquired from women at early follicular (T1), peri-ovulatory (T2) and mid-luteal (T3) phases of the MC. We investigated the functional repertoire (number of brain configurations based on fast high-amplitude bursts of the brain signals) and the region-specific influence on large-scale dynamics across the MC. Finally, we assessed the relationship between sex hormones and changes in brain dynamics. A significantly larger number of visited configurations in T2 as compared to T1 was specifically observed in the beta frequency band. No relationship between changes in brain dynamics and sex hormones was evident. Finally, we showed that the left posterior cingulate gyrus and the right insula were recruited more often in the functional repertoire during T2 as compared to T1, while the right pallidum was more often part of the functional repertoires during T1 as compared to T2. In summary, we showed hormone-independent increased flexibility of the brain dynamics during the ovulatory phase. Moreover, we demonstrated that several specific brain regions play a key role in determining this change.


Subject(s)
Follicular Phase , Menstrual Cycle , Female , Humans , Brain , Magnetoencephalography , Gonadal Steroid Hormones
6.
Sci Rep ; 14(1): 1913, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38253728

ABSTRACT

Three-dimensional motion analysis represents a quantitative approach to assess spatio-temporal and kinematic changes in health and disease. However, these parameters provide only segmental information, discarding minor changes of complex whole body kinematics characterizing physiological and/or pathological conditions. We aimed to assess how levodopa intake affects the whole body, analyzing the kinematic interactions during gait in Parkinson's disease (PD) through network theory which assess the relationships between elements of a system. To this end, we analysed gait data of 23 people with PD applying network theory to the acceleration kinematic data of 21 markers placed on participants' body landmarks. We obtained a matrix of kinematic interactions (i.e., the kinectome) for each participant, before and after the levodopa intake, we performed a topological analysis to evaluate the large-scale interactions among body elements, and a multilinear regression analysis to verify whether the kinectome's topology could predict the clinical variations induced by levodopa. We found that, following levodopa intake, patients with PD showed less trunk and head synchronization (p-head = 0.048; p-7th cervical vertebrae = 0.032; p-10th thoracic vertebrae = 0.006) and an improved upper-lower limbs synchronization (elbows right, p = 0.002; left, p = 0.005), (wrists right, p = 0.003; left, p = 0.002; knees right, p = 0.003; left, p = 0.039) proportional to the UPDRS-III scores. These results may be attributable to the reduction of rigidity, following pharmacological treatment.


Subject(s)
Levodopa , Parkinson Disease , Humans , Levodopa/pharmacology , Levodopa/therapeutic use , Biomechanical Phenomena , Dopamine , Upper Extremity , Acceleration , Parkinson Disease/drug therapy
7.
Neurobiol Aging ; 132: 36-46, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37717553

ABSTRACT

Functional connectivity has been used as a framework to investigate widespread brain interactions underlying cognitive deficits in mild cognitive impairment (MCI). However, many functional connectivity metrics focus on the average of the periodic activities, disregarding the aperiodic bursts of activity (i.e., the neuronal avalanches) characterizing the large-scale dynamic activities of the brain. Here, we apply the recently described avalanche transition matrix framework to source-reconstructed magnetoencephalography signals in a cohort of 32 MCI patients and 32 healthy controls to describe the spatio-temporal features of neuronal avalanches and explore their topological properties. Our results showed that MCI patients showed a more centralized network (as assessed by higher values of the degree divergence and leaf fraction) as compared to healthy controls. Furthermore, we found that the degree divergence (in the theta band) was predictive of hippocampal memory impairment. These findings highlight the role of the changes of aperiodic bursts in clinical conditions and may contribute to a more thorough phenotypical assessment of patients.


Subject(s)
Cognition Disorders , Cognitive Dysfunction , Humans , Magnetoencephalography , Brain/diagnostic imaging , Cognitive Dysfunction/psychology , Memory Disorders
8.
Neuroimage Clin ; 39: 103464, 2023.
Article in English | MEDLINE | ID: mdl-37399676

ABSTRACT

BACKGROUND: Brain connectome fingerprinting is progressively gaining ground in the field of brain network analysis. It represents a valid approach in assessing the subject-specific connectivity and, according to recent studies, in predicting clinical impairment in some neurodegenerative diseases. Nevertheless, its performance, and clinical utility, in the Multiple Sclerosis (MS) field has not yet been investigated. METHODS: We conducted the Clinical Connectome Fingerprint (CCF) analysis on source-reconstructed magnetoencephalography signals in a cohort of 50 subjects: twenty-five MS patients and twenty-five healthy controls. RESULTS: All the parameters of identifiability, in the alpha band, were reduced in patients as compared to controls. These results implied a lower similarity between functional connectomes (FCs) of the same patient and a reduced homogeneity among FCs in the MS group. We also demonstrated that in MS patients, reduced identifiability was able to predict, fatigue level (assessed by the Fatigue Severity Scale). CONCLUSION: These results confirm the clinical usefulness of the CCF in both identifying MS patients and predicting clinical impairment. We hope that the present study provides future prospects for treatment personalization on the basis of individual brain connectome.


Subject(s)
Connectome , Multiple Sclerosis , Humans , Connectome/methods , Multiple Sclerosis/diagnostic imaging , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Fatigue/diagnostic imaging , Fatigue/etiology
9.
Neuroimage ; 277: 120260, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37392807

ABSTRACT

Subject differentiation bears the possibility to individualize brain analyses. However, the nature of the processes generating subject-specific features remains unknown. Most of the current literature uses techniques that assume stationarity (e.g., Pearson's correlation), which might fail to capture the non-linear nature of brain activity. We hypothesize that non-linear perturbations (defined as neuronal avalanches in the context of critical dynamics) spread across the brain and carry subject-specific information, contributing the most to differentiability. To test this hypothesis, we compute the avalanche transition matrix (ATM) from source-reconstructed magnetoencephalographic data, as to characterize subject-specific fast dynamics. We perform differentiability analysis based on the ATMs, and compare the performance to that obtained using Pearson's correlation (which assumes stationarity). We demonstrate that selecting the moments and places where neuronal avalanches spread improves differentiation (P < 0.0001, permutation testing), despite the fact that most of the data (i.e., the linear part) are discarded. Our results show that the non-linear part of the brain signals carries most of the subject-specific information, thereby clarifying the nature of the processes that underlie individual differentiation. Borrowing from statistical mechanics, we provide a principled way to link emergent large-scale personalized activations to non-observable, microscopic processes.


Subject(s)
Brain , Models, Neurological , Humans , Brain/physiology , Magnetoencephalography , Brain Mapping , Neurons/physiology
10.
Chirurgia (Bucur) ; 118(1): 8-19, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36913413

ABSTRACT

Introduction: Achalasia is a rare primary esophageal disorder characterized by impaired functioning of the lower esophageal sphincter. The goal of treatment is to reduce symptoms and improve the quality of life. The gold standard of surgical approach is Heller-Dor myotomy. The aim of this review is to describe the use of robotic surgery in patients with achalasia. Methods: The literature review was performed by searching on PubMed, Web of Science, Scopus and EMBASE for all studies on robotic surgery for achalasia, published from January 1, 2001, to December 31, 2022. We focused our attention on randomized controlled trials (RCTs), metaanalysis, systematic reviews, and observational studies on large cohorts of patients. Furthermore, we have identified relevant articles from the reference list. Conclusions: Taking into consideration our review and experience, RHM with partial fundoplication is safe, efficient, comfortable for the surgeon and characterized by a reduction of the intraoperative perforation rate of the esophageal mucosa. This approach may represent the future for the surgical treatment of achalasia especially with a reduction in costs.


Subject(s)
Esophageal Achalasia , Laparoscopy , Robotic Surgical Procedures , Humans , Esophageal Achalasia/surgery , Esophageal Achalasia/diagnosis , Laparoscopy/adverse effects , Treatment Outcome , Esophageal Sphincter, Lower/surgery , Fundoplication
11.
Hum Brain Mapp ; 44(3): 1239-1250, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36413043

ABSTRACT

The clinical connectome fingerprint (CCF) was recently introduced as a way to assess brain dynamics. It is an approach able to recognize individuals, based on the brain network. It showed its applicability providing network features used to predict the cognitive decline in preclinical Alzheimer's disease. In this article, we explore the performance of CCF in 47 Parkinson's disease (PD) patients and 47 healthy controls, under the hypothesis that patients would show reduced identifiability as compared to controls, and that such reduction could be used to predict motor impairment. We used source-reconstructed magnetoencephalography signals to build two functional connectomes for 47 patients with PD and 47 healthy controls. Then, exploiting the two connectomes per individual, we investigated the identifiability characteristics of each subject in each group. We observed reduced identifiability in patients compared to healthy individuals in the beta band. Furthermore, we found that the reduction in identifiability was proportional to the motor impairment, assessed through the Unified Parkinson's Disease Rating Scale, and, interestingly, able to predict it (at the subject level), through a cross-validated regression model. Along with previous evidence, this article shows that CCF captures disrupted dynamics in neurodegenerative diseases and is particularly effective in predicting motor clinical impairment in PD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Parkinson Disease , Humans , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Brain/diagnostic imaging , Magnetoencephalography , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology
12.
Ann Ital Chir ; 112022 Nov 24.
Article in English | MEDLINE | ID: mdl-36484287

ABSTRACT

INTRODUCTION: Cholangiography with indocyanine green fluorescence (ICG) is increasingly used to visualize the bile duct anatomy during laparoscopic cholecystectomy. Biliary leaks are rare complications after laparoscopic cholecystectomy, result could be lethal. Lesion's site is not always visible. We present an interesting case of a patient with biloma due to an iatrogenic lesion of the biliary tract, treated in urgency using ICG fluorescence. To our knowledge, this is the only case in the literature. CASE PRESENTATION: A 62-years-old patient after 7 days from laparoscopic cholecystectomy presented abdominal pain and fever. Blood tests showed an increase of inflammation indexes. Abdominal US and abdominal CT revealed a conspicuous right sub-hepatic fluid. We performed a laparoscopy using ICG fluorescence to find the biliary leak. Operative time of surgery was 60 min. There were no complications during this procedure. CONCLUSIONS: ICG is a safe and effective procedure that enables real-time visualization of the biliary system. In some cases, it can also be used in urgent surgery, where the biliary anatomy is much more complex. KEY WORDS: Biloma, Indocyanine green fluorescence, Iatrogenic biliary leaks, Urgent surgery.


Subject(s)
Indocyanine Green , Humans , Middle Aged
13.
Ann Ital Chir ; 112022 Nov 07.
Article in English | MEDLINE | ID: mdl-36459470

ABSTRACT

BACKGROUND: Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. They are 1% of all gastrointestinal cancer and 60% of them affects the stomach. Up to 10% to 30% of GISTs are malignant. They occur in people over the age of 50 in both sexes. The most common symptoms of gastric GIST are bleeding, dyspepsia, vague abdominal pain or discomfort, and mass palpation. Some are asymptomatic and diagnosed incidentally. The first choice of treatment for primary localized gastric GISTs is surgery. The most suitable type of resection is not yet clear and it depends on size and location of tumor, especially for difficult localizations, such as subcardial, posterior wall and less curvature GISTs. METHODS: We report a rare case of a patient with subcardial gastric GIST treated with laparoscopic atypical quadrangular resection guided by intraoperative endoscopy. Furthermore, we performed a review of the literature about this topic. RESULTS: Despite the difficult localization an atypical resection of the gastric GIST was performed without breaking the lesion but preserving the lumen of the esofagogastrich junction. CONCLUSIONS: An atypical quadrangular resection for subcardial gastric GISTs, located along the posterior wall and lesser curvature, can be a safe and reliable alternative technique. However, we believe that it should be performed by an experienced surgeon and endoscopist to decrease the risk of mass's break and the narrowing of the cardial region's lumen. In our literature's knowledge there aren't cases treated with this technique. KEY WORDS: Gastric GIST, Gastrointestinal stromal tumors, Intraoperative endoscopy, Laparoscopic resection, Minimally invasive surgery.


Subject(s)
Gastrointestinal Stromal Tumors , Laparoscopy , Stomach Neoplasms , Surgeons , Female , Male , Humans , Gastrointestinal Stromal Tumors/surgery , Stomach Neoplasms/diagnosis , Stomach Neoplasms/surgery
14.
Metabolites ; 12(9)2022 Sep 04.
Article in English | MEDLINE | ID: mdl-36144241

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a multifactorial neurodegenerative pathology of the upper or lower motor neuron. Evaluation of ALS progression is based on clinical outcomes considering the impairment of body sites. ALS has been extensively investigated in the pathogenetic mechanisms and the clinical profile; however, no molecular biomarkers are used as diagnostic criteria to establish the ALS pathological staging. Using the source-reconstructed magnetoencephalography (MEG) approach, we demonstrated that global brain hyperconnectivity is associated with early and advanced clinical ALS stages. Using nuclear magnetic resonance (1H-NMR) and high resolution mass spectrometry (HRMS) spectroscopy, here we studied the metabolomic profile of ALS patients' sera characterized by different stages of disease progression-namely early and advanced. Multivariate statistical analysis of the data integrated with the network analysis indicates that metabolites related to energy deficit, abnormal concentrations of neurotoxic metabolites and metabolites related to neurotransmitter production are pathognomonic of ALS in the advanced stage. Furthermore, analysis of the lipidomic profile indicates that advanced ALS patients report significant alteration of phosphocholine (PCs), lysophosphatidylcholine (LPCs), and sphingomyelin (SMs) metabolism, consistent with the exigency of lipid remodeling to repair advanced neuronal degeneration and inflammation.

15.
Neurology ; 99(21): e2395-e2405, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36180240

ABSTRACT

BACKGROUND AND OBJECTIVES: Amyotrophic lateral sclerosis (ALS) is a multisystem disorder, as supported by clinical, molecular, and neuroimaging evidence. As a consequence, predicting clinical features requires a description of large-scale neuronal dynamics. Normally, brain activity dynamically reconfigures over time, recruiting different brain areas. Brain pathologies induce stereotyped dynamics which, in turn, are linked to clinical impairment. Hence, based on recent evidence showing that brain functional networks become hyperconnected as ALS progresses, we hypothesized that the loss of flexible dynamics in ALS would predict the symptoms severity. METHODS: To test this hypothesis, we quantified flexibility using the "functional repertoire" (i.e., the number of configurations of active brain areas) as measured from source-reconstructed magnetoencephalography (MEG) in patients with ALS and healthy controls. The activity of brain areas was reconstructed in the classic frequency bands, and the functional repertoire was estimated to quantify spatiotemporal fluctuations of brain activity. Finally, we built a k-fold cross-validated multilinear model to predict the individual clinical impairment from the size of the functional repertoire. RESULTS: Comparing 42 patients with ALS and 42 healthy controls, we found a more stereotyped brain dynamics in patients with ALS (p < 0.05), as conveyed by the smaller functional repertoire. The relationship between the size of the functional repertoire and the clinical scores in the ALS group showed significant correlations in both the delta and the theta frequency bands. Furthermore, through a k-fold cross-validated multilinear regression model, we found that the functional repertoire predicted both clinical staging (p < 0.001 and p < 0.01, in the delta and theta bands, respectively) and symptoms severity (p < 0.001, in both the delta and theta bands). DISCUSSION: Our work shows that (1) ALS pathology reduces the flexibility of large-scale brain dynamics, (2) subcortical regions play a key role in determining brain dynamics, and (3) reduced brain flexibility predicts disease stage and symptoms severity. Our approach provides a noninvasive tool to quantify alterations in brain dynamics in ALS (and, possibly, other neurodegenerative diseases), thus opening new opportunities in disease management and a framework to test, in the near future, the effects of disease-modifying interventions at the whole-brain level.


Subject(s)
Amyotrophic Lateral Sclerosis , Humans , Amyotrophic Lateral Sclerosis/diagnosis , Brain/diagnostic imaging , Magnetoencephalography , Severity of Illness Index , Magnetic Resonance Imaging
16.
Ann N Y Acad Sci ; 1516(1): 247-261, 2022 10.
Article in English | MEDLINE | ID: mdl-35838306

ABSTRACT

Human voluntary movement stems from the coordinated activations in space and time of many musculoskeletal segments. However, the current methodological approaches to study human movement are still limited to the evaluation of the synergies among a few body elements. Network science can be a useful approach to describe movement as a whole and to extract features that are relevant to understanding both its complex physiology and the pathophysiology of movement disorders. Here, we propose to represent human movement as a network (that we named the kinectome), where nodes represent body points, and edges are defined as the correlations of the accelerations between each pair of them. We applied this framework to healthy individuals and patients with Parkinson's disease, observing that the patients' kinectomes display less symmetrical patterns as compared to healthy controls. Furthermore, we used the kinectomes to successfully identify both healthy and diseased subjects using short gait recordings. Finally, we highlighted topological features that predict the individual clinical impairment in patients. Our results define a novel approach to study human movement. While deceptively simple, this approach is well-grounded, and represents a powerful tool that may be applied to a wide spectrum of frameworks.


Subject(s)
Gait , Parkinson Disease , Acceleration , Biomechanical Phenomena , Gait/physiology , Humans , Movement/physiology
17.
AIMS Neurosci ; 9(2): 250-263, 2022.
Article in English | MEDLINE | ID: mdl-35860681

ABSTRACT

We have previously evidenced that Mindfulness Meditation (MM) in experienced meditators (EMs) is associated with long-lasting topological changes in resting state condition. However, what occurs during the meditative phase is still debated. Utilizing magnetoencephalography (MEG), the present study is aimed at comparing the topological features of the brain network in a group of EMs (n = 26) during the meditative phase with those of individuals who had no previous experience of any type of meditation (NM group, n = 29). A wide range of topological changes in the EM group as compared to the NM group has been shown. Specifically, in EMs, we have observed increased betweenness centrality in delta, alpha, and beta bands in both cortical (left medial orbital cortex, left postcentral area, and right visual primary cortex) and subcortical (left caudate nucleus and thalamus) areas. Furthermore, the degree of beta band in parietal and occipital areas of EMs was increased too. Our exploratory study suggests that the MM can change the functional brain network and provides an explanatory hypothesis on the brain circuits characterizing the meditative process.

18.
Neuroimage Clin ; 35: 103095, 2022.
Article in English | MEDLINE | ID: mdl-35764029

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterised by functional connectivity alterations in both motor and extra-motor brain regions. Within the framework of network analysis, fingerprinting represents a reliable approach to assess subject-specific connectivity features within a given population (healthy or diseased). Here, we applied the Clinical Connectome Fingerprint (CCF) analysis to source-reconstructed magnetoencephalography (MEG) signals in a cohort of seventy-eight subjects: thirty-nine ALS patients and thirty-nine healthy controls. We set out to develop an identifiability matrix to assess the extent to which each patient was recognisable based on his/her connectome, as compared to healthy controls. The analysis was performed in the five canonical frequency bands. Then, we built a multilinear regression model to test the ability of the "clinical fingerprint" to predict the clinical evolution of the disease, as assessed by the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-r), the King's disease staging system, and the Milano-Torino Staging (MiToS) disease staging system. We found a drop in the identifiability of patients in the alpha band compared to the healthy controls. Furthermore, the "clinical fingerprint" was predictive of the ALSFRS-r (p = 0.0397; ß = 32.8), the King's (p = 0.0001; ß = -7.40), and the MiToS (p = 0.0025; ß = -4.9) scores. Accordingly, it negatively correlated with the King's (Spearman's rho = -0.6041, p = 0.0003) and MiToS scales (Spearman's rho = -0.4953, p = 0.0040). Our results demonstrated the ability of the CCF approach to predict the individual motor impairment in patients affected by ALS. Given the subject-specificity of our approach, we hope to further exploit it to improve disease management.


Subject(s)
Amyotrophic Lateral Sclerosis , Connectome , Neurodegenerative Diseases , Amyotrophic Lateral Sclerosis/diagnostic imaging , Brain/diagnostic imaging , Disease Progression , Female , Humans , Magnetoencephalography , Male
19.
Scand J Psychol ; 63(5): 495-503, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35674278

ABSTRACT

Personality neuroscience is focusing on the correlation between individual differences and the efficiency of large-scale networks from the perspective of the brain as an interconnected network. A suitable technique to explore this relationship is the magnetoencephalography (MEG), but not many MEG studies are aimed at investigating topological properties correlated to personality traits. By using MEG, the present study aims to evaluate how individual differences described in Cloninger's psychobiological model are correlated with specific cerebral structures. Fifty healthy individuals (20 males, 30 females, mean age: 27.4 ± 4.8 years) underwent Temperament and Character Inventory examination and MEG recording during a resting state condition. High harm avoidance scores were associated with a reduced centrality of the left caudate nucleus and this negative correlation was maintained in females when we analyzed gender differences. Our data suggest that the caudate nucleus plays a key role in adaptive behavior and could be a critical node in insular salience network. The clear difference between males and females allows us to suggest that topological organization correlated to personality is highly dependent on gender. Our findings provide new insights to evaluate the mutual influences of topological and functional connectivity in neural communication efficiency and disruption as biomarkers of psychopathological traits.


Subject(s)
Character , Magnetoencephalography , Adult , Brain , Female , Humans , Male , Personality , Personality Inventory , Temperament , Young Adult
20.
PLoS One ; 17(5): e0268392, 2022.
Article in English | MEDLINE | ID: mdl-35551300

ABSTRACT

The synthetic indices are widely used to describe balance and stability during gait. Some of these are employed to describe the gait features in Parkinson's disease (PD). However, the results are sometimes inconsistent, and the same indices are rarely used to compare the individuals affected by PD before and after levodopa intake (OFF and ON condition, respectively). Our aim was to investigate which synthetic measure among Harmonic Ratio, Jerk Ratio, Golden Ratio and Trunk Displacement Index is representative of gait stability and harmony, and which of these are more sensitive to the variations between OFF and ON condition. We found that all indices, except the Jerk Ratio, significantly improve after levodopa. Only the improvement of the Trunk Displacement Index showed a direct correlation with the motor improvement measured through the clinical scale UPDRS-III (Unified Parkinson's Disease Rating Scale-part III). In conclusion, we suggest that the synthetic indices can be useful to detect motor changes induced by, but not all of them clearly correlate with the clinical changes achieved with the levodopa administration. In our analysis, only the Trunk Displacement Index was able to show a clear relationship with the PD clinical motor improvement.


Subject(s)
Dyskinesias , Parkinson Disease , Antiparkinson Agents/pharmacology , Antiparkinson Agents/therapeutic use , Biomechanical Phenomena , Gait , Humans , Levodopa/pharmacology , Levodopa/therapeutic use , Parkinson Disease/diagnosis , Parkinson Disease/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL