Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
BMC Pediatr ; 24(1): 469, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39044205

ABSTRACT

BACKGROUND: This study constitutes a secondary analysis of a prospective cohort aiming to evaluate the potential correlation between nutritional risk and status at admission with the occurrence of post-discharge complications and hospital readmissions in children receiving care at high resource Centres. METHODS: Data was collected from 5 Canadian tertiary pediatric Centers between 2012 and 2016. Nutritional risk and status were evaluated at hospital admission with validated tools (STRONGkids and Subjective Global Nutrition Assessment [SGNA]) and anthropometric measurements. Thirty days after discharge, occurrence of post-discharge complications and hospital readmission were documented. RESULTS: A total of 360 participants were included in the study (median age, 6.1 years; median length of stay, 5 days). Following discharge, 24.1% experienced complications and 19.5% were readmitted to the hospital. The odds of experiencing complications were nearly tripled for participants with a high nutritional risk compared to a low risk (OR = 2.85; 95% CI [1.08-7.54]; P = 0.035) and those whose caregivers reported having a poor compared to a good appetite (OR = 2.96; 95% CI [1.59-5.50]; P < 0.001). According to SGNA, patients identified as malnourished had significantly higher odds of complications (OR, 1.92; 95% CI, 1.15-3.20; P = 0.013) and hospital readmission (OR, 1.95; 95% CI, 1.12-3.39; P = 0.017) than to those well-nourished. CONCLUSIONS: This study showed that complications and readmission post-discharge are common, and these are more likely to occur in malnourished children compared to their well-nourished counterparts. Enhancing nutritional care during admission, at discharge and in the community may be an area for future outcome optimization.


Subject(s)
Nutrition Assessment , Nutritional Status , Patient Discharge , Patient Readmission , Humans , Patient Readmission/statistics & numerical data , Male , Female , Child , Canada/epidemiology , Prospective Studies , Child, Preschool , Adolescent , Infant , Risk Factors , Malnutrition/epidemiology , Malnutrition/etiology , Child Nutrition Disorders/epidemiology
2.
Biomedicines ; 12(7)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39062121

ABSTRACT

Over the past three decades, significant efforts have been focused on unraveling congenital intestinal disorders that disrupt the absorption of dietary lipids and fat-soluble vitamins. The primary goal has been to gain deeper insights into intra-enterocyte sites, molecular steps, and crucial proteins/regulatory pathways involved, while simultaneously identifying novel therapeutic targets and diagnostic tools. This research not only delves into specific and rare malabsorptive conditions, such as chylomicron retention disease (CRD), but also contributes to our understanding of normal physiology through the utilization of cutting-edge cellular and animal models alongside advanced research methodologies. This review elucidates how modern techniques have facilitated the decoding of CRD gene defects, the identification of dysfunctional cellular processes, disease regulatory mechanisms, and the essential role of coat protein complex II-coated vesicles and cargo receptors in chylomicron trafficking and endoplasmic reticulum (ER) exit sites. Moreover, experimental approaches have shed light on the multifaceted functions of SAR1B GTPase, wherein loss-of-function mutations not only predispose individuals to CRD but also exacerbate oxidative stress, inflammation, and ER stress, potentially contributing to clinical complications associated with CRD. In addition to dissecting the primary disease pathology, genetically modified animal models have emerged as invaluable assets in exploring various ancillary aspects, including responses to environmental challenges such as dietary alterations, gender-specific disparities in disease onset and progression, and embryonic lethality or developmental abnormalities. In summary, this comprehensive review provides an in-depth and contemporary analysis of CRD, offering a meticulous examination of the CRD current landscape by synthesizing the latest research findings and advancements in the field.

3.
Nutrients ; 16(6)2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38542783

ABSTRACT

There is currently a growing interest in the use of nutraceuticals as a means of preventing the development of complex diseases. Given the considerable health potential of milk-derived peptides, the aim of this study was to investigate the protective effects of glycomacropeptide (GMP) on metabolic syndrome. Particular emphasis was placed on the potential mechanisms mitigating cardiometabolic disorders in high-fat, high-fructose diet-fed mice in the presence of GMP or Bipro, an isocaloric control. The administration of GMP for 12 weeks reduced obesity, hyperglycemia and hyperinsulinemia caused by a high-fat, high-fructose diet, resulting in a decline in insulin resistance. GMP also lessened systemic inflammation, as indicated by decreased circulating inflammatory cytokines. In the intestinal and hepatic tissues, GMP improved homeostasis by increasing insulin sensitivity and attenuating high-fat, high-fructose-induced inflammation, oxidative stress and endoplasmic reticulum stress. Biochemical and histological analyses revealed improved hepatic steatosis and fatty acid composition in the livers of high-fat, high-fructose diet-fed mice treated with GMP compared to Bipro. A trend toward a decrease in bile acids without any marked changes in intestinal microbiota composition characterized GMP-treated animals compared to those administered Bipro. GMP offers considerable potential for fighting metabolic syndrome-related components and complications given its beneficial effects on risk factors such as inflammation, oxidative stress and endoplasmic reticulum stress without involving the intestinal microbiota.


Subject(s)
Caseins , Hyperinsulinism , Insulin Resistance , Metabolic Syndrome , Peptide Fragments , Animals , Mice , Metabolic Syndrome/metabolism , Liver/metabolism , Inflammation/metabolism , Diet, High-Fat/adverse effects , Hyperinsulinism/metabolism , Fructose/metabolism , Mice, Inbred C57BL
4.
J Lipid Res ; 64(9): 100423, 2023 09.
Article in English | MEDLINE | ID: mdl-37558128

ABSTRACT

Biallelic pathogenic variants of the Sar1b gene cause chylomicron retention disease (CRD) whose central phenotype is the inability to secrete chylomicrons. Patients with CRD experience numerous clinical symptoms such as gastrointestinal, hepatic, neuromuscular, ophthalmic, and cardiological abnormalities. Recently, the production of mice expressing either a targeted deletion or mutation of Sar1b recapitulated biochemical and gastrointestinal defects associated with CRD. The present study was conducted to better understand little-known aspects of Sar1b mutations, including mouse embryonic development, lipid profile, and lipoprotein composition in response to high-fat diet, gut and liver cholesterol metabolism, sex-specific effects, and genotype-phenotype differences. Sar1b deletion and mutation produce a lethal phenotype in homozygous mice, which display intestinal lipid accumulation without any gross morphological abnormalities. On high-fat diet, mutant mice exhibit more marked abnormalities in body composition, adipose tissue and liver weight, plasma cholesterol, non-HDL cholesterol and polyunsaturated fatty acids than those on the regular Chow diet. Divergences were also noted in lipoprotein lipid composition, lipid ratios (serving as indices of particle size) and lipoprotein-apolipoprotein distribution. Sar1b defects significantly reduce gut cholesterol accumulation while altering key players in cholesterol metabolism. Noteworthy, variations were observed between males and females, and between Sar1b deletion and mutation phenotypes. Overall, mutant animal findings reveal the importance of Sar1b in several biochemical, metabolic and developmental processes.


Subject(s)
Diet, High-Fat , Embryonic Development , Monomeric GTP-Binding Proteins , Animals , Female , Humans , Male , Mice , Cholesterol/metabolism , Chylomicrons/metabolism , Diet, High-Fat/adverse effects , Lipid Metabolism/genetics , Liver/metabolism , Monomeric GTP-Binding Proteins/genetics
5.
Nutrients ; 15(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36986124

ABSTRACT

Milk-derived bioactive proteins have increasingly gained attention and consideration throughout the world due to their high-quality amino acids and multiple health-promoting attributes. Apparently, being at the forefront of functional foods, these bioactive proteins are also suggested as potential alternatives for the management of various complex diseases. In this review, we will focus on lactoferrin (LF) and osteopontin (OPN), two multifunctional dairy proteins, as well as to their naturally occurring bioactive LF-OPN complex. While describing their wide variety of physiological, biochemical, and nutritional functionalities, we will emphasize their specific roles in the perinatal period. Afterwards, we will evaluate their ability to control oxidative stress, inflammation, gut mucosal barrier, and intestinal microbiota in link with cardiometabolic disorders (CMD) (obesity, insulin resistance, dyslipidemia, and hypertension) and associated complications (diabetes and atherosclerosis). This review will not only attempt to highlight the mechanisms of action, but it will critically discuss the potential therapeutic applications of the underlined bioactive proteins in CMD.


Subject(s)
Cardiovascular Diseases , Lactoferrin , Pregnancy , Female , Humans , Lactoferrin/pharmacology , Lactoferrin/metabolism , Osteopontin/pharmacology , Inflammation , Obesity , Milk Proteins/metabolism , Cardiovascular Diseases/prevention & control
6.
Antioxid Redox Signal ; 37(1-3): 54-83, 2022 07.
Article in English | MEDLINE | ID: mdl-35072542

ABSTRACT

Significance: Metabolic syndrome (MetS) prevalence continues to grow and represents a serious public health issue worldwide. This multifactorial condition carries the risk of hastening the development of type 2 diabetes (T2D), non-alcoholic fatty liver disease (NAFLD), and cardiovascular diseases (CVD). Another troubling aspect of MetS is the requirement of poly-pharmacological therapy not devoid of side effects. Therefore, there is an urgent need for prospecting alternative nutraceuticals as effective therapeutic agents for MetS. Recent Advances: Currently, there is an increased interest in understanding the regulation of metabolic derangements by specialized pro-resolving lipid mediators (SPMs), especially those derived from the long chain n-3 polyunsaturated fatty acids. Critical Issues: The SPMs are recognized as efficient modulators that are capable of inhibiting the production of pro-inflammatory cytokines, blocking neutrophil activation/recruitment, and inducing non-phlogistic (anti-inflammatory) activation of macrophage engulfment and removal of apoptotic inflammatory cells and debris. The aim of the present review is precisely to first underline key concepts relative to SPM functions before focusing on their status and actions on MetS components (e.g., obesity, glucose dysmetabolism, hyperlipidemia, hypertension) and complications such as T2D, NAFLD, and CVD. Future Directions: Valuable data from preclinical and clinical investigations have emphasized the SPM functions and influence on oxidative stress- and inflammation-related MetS. Despite these promising findings obtained without compromising host defense, additional efforts are needed to evaluate their potential therapeutic applications and further develop practical tools to monitor their bioavailability to cope with cardiometabolic disorders. Antioxid. Redox Signal. 37, 54-83.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Fatty Acids, Omega-3 , Metabolic Syndrome , Non-alcoholic Fatty Liver Disease , Cardiovascular Diseases/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Fatty Acids, Omega-3/therapeutic use , Humans , Inflammation/metabolism , Inflammation Mediators , Metabolic Syndrome/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy
7.
Antioxidants (Basel) ; 12(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36670951

ABSTRACT

While the prevalence of metabolic syndrome (MetS) is steadily increasing worldwide, no optimal pharmacotherapy is readily available to address its multifaceted risk factors and halt its complications. This growing challenge mandates the development of other future curative directions. The purpose of the present study is to investigate the efficacy of cranberry proanthocyanidins (PACs) in improving MetS pathological conditions and liver complications; C57BL/6J mice were fed either a standard chow or a high fat/high sucrose (HFHS) diet with and without PACs (200 mg/kg), delivered by daily gavage for 12 weeks. Our results show that PACs lowered HFHS-induced obesity, insulin resistance, and hyperlipidemia. In conjunction, PACs lessened circulatory markers of oxidative stress (OxS) and inflammation. Similarly, the anti-oxidative and anti-inflammatory capacities of PACs were noted in the liver in association with improved hepatic steatosis. Inhibition of lipogenesis and stimulation of beta-oxidation could account for PACs-mediated decline of fatty liver as evidenced not only by the expression of rate-limiting enzymes but also by the status of AMPKα (the key sensor of cellular energy) and the powerful transcription factors (PPARα, PGC1α, SREBP1c, ChREBP). Likewise, treatment with PACs resulted in the downregulation of critical enzymes of liver gluconeogenesis, a process contributing to increased rates of glucose production in type 2 diabetes. Our findings demonstrate that PACs prevented obesity and improved insulin resistance likely via suppression of OxS and inflammation while diminishing hyperlipidemia and fatty liver disease, as clear evidence for their strength of fighting the cluster of MetS abnormalities.

8.
Biomedicines ; 9(9)2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34572325

ABSTRACT

BACKGROUND AND AIMS: The increasing prevalence and absence of effective global treatment for metabolic syndrome (MetS) are alarming given the potential progression to severe non-communicable disorders such as type 2 diabetes and nonalcoholic fatty liver disease. The purpose of this study was to investigate the regulatory role of glycomacropeptide (GMP), a powerful milk peptide, in insulin resistance and liver dysmetabolism, two central MetS conditions. MATERIALS AND METHODS: C57BL/6 male mice were fed a chow (Ctrl), high-fat, high-sucrose (HFHS) diet or HFHS diet along with GMP (200 mg/kg/day) administered by gavage for 12 weeks. RESULTS: GMP lowered plasma insulin levels (in response to oral glucose tolerance test) and HOMA-IR index, indicating a more elevated systemic insulin sensitivity. GMP was also able to decrease oxidative stress and inflammation in the circulation as reflected by the decline of malondialdehyde, F2 isoprostanes and lipopolysaccharide. In the liver, GMP raised the protein expression of the endogenous anti-oxidative enzyme GPx involving the NRF2 signaling pathway. Moreover, the administration of GMP reduced the gene expression of hepatic pro-inflammatory COX-2, TNF-α and IL-6 via inactivation of the TLR4/NF-κB signaling pathway. Finally, GMP improved hepatic insulin sensitization given the modulation of AKT, p38 MAPK and SAPK/JNK activities, thereby restoring liver homeostasis as revealed by enhanced fatty acid ß-oxidation, reduced lipogenesis and gluconeogenesis. CONCLUSIONS: Our study provides evidence that GMP represents a promising dietary nutraceutical in view of its beneficial regulation of systemic insulin resistance and hepatic insulin signaling pathway, likely via its powerful antioxidant and anti-inflammatory properties.

9.
Am J Physiol Gastrointest Liver Physiol ; 321(2): G99-G112, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34009033

ABSTRACT

COVID-19 represents a novel infectious disease induced by SARS-CoV-2. It has to date affected 24,240,000 individuals and killed 2,735,805 people worldwide. The highly infectious virus attacks mainly the lung, causing fever, cough, and fatigue in symptomatic patients, but also pneumonia in severe cases. However, growing evidence highlights SARS-CoV-2-mediated extrarespiratory manifestations, namely, gastrointestinal (GI) and hepatic complications. The detection of 1) the virus in the GI system (duodenum, colon, rectum, anal region, and feces); 2) the high expression of additional candidate coreceptors/auxiliary proteins to facilitate the virus entry; 3) the abundant viral angiotensin-converting enzyme 2 receptor; 4) the substantial expression of host transmembrane serine protease 2, necessary to induce virus-cell fusion; 5) the viral replication in the intestinal epithelial cells; and 6) the primarily GI disorders in the absence of respiratory symptoms lead to increased awareness of the risk of disease transmission via the fecal-oral route. The objectives of this review are to provide a brief update of COVID-19 pathogenesis and prevalence, present a critical overview of its GI and liver complications that affect clinical COVID-19 outcomes, clarify associated mechanisms (notably microbiota-related), define whether gut/liver disorders occur more frequently among critically ill patients with COVID-19, determine the impact of COVID-19 on preexisting gut/liver complications and vice versa, and discuss the available strategies for prevention and treatment to improve prognosis of the patients. The novel SARS-CoV-2 can cause gastrointestinal and hepatobiliary manifestations. Metagenomics studies of virobiota in response to SARS-CoV-2 infection are necessary to highlight the contribution of bacterial microflora to COVID-19 phenotype, which is crucial for developing biomarkers and therapeutics.


Subject(s)
COVID-19/virology , Gastrointestinal Tract/virology , Liver Diseases/virology , SARS-CoV-2 , Humans
10.
J Lipid Res ; 62: 100085, 2021.
Article in English | MEDLINE | ID: mdl-33964306

ABSTRACT

Chylomicron retention disease (CRD) is an autosomal recessive disorder associated with biallelic Sar1b mutations leading to defects in intracellular chylomicron (CM) trafficking and secretion. To date, a direct cause-effect relationship between CRD and Sar1b mutation has not been established, but genetically modified animal models provide an opportunity to elucidate unrecognized aspects of these mutations. To examine the physiological role and molecular mechanisms of Sar1b function, we generated mice expressing either a targeted deletion or mutation of human Sar1b using the CRISPR-Cas9 system. We found that deletion or mutation of Sar1b in mice resulted in late-gestation lethality of homozygous embryos. Moreover, compared with WT mice, heterozygotes carrying a single disrupted Sar1b allele displayed lower plasma levels of triglycerides, total cholesterol, and HDL-cholesterol, along with reduced CM secretion following gastric lipid gavage. Similarly, decreased expression of apolipoprotein B and microsomal triglyceride transfer protein was observed in correlation with the accumulation of mucosal lipids. Inefficient fat absorption in heterozygotes was confirmed via an increase in fecal lipid excretion. Furthermore, genetically modified Sar1b affected intestinal lipid homeostasis as demonstrated by enhanced fatty acid ß-oxidation and diminished lipogenesis through the modulation of transcription factors. This is the first reported mammalian animal model with human Sar1b genetic defects, which reproduces some of the characteristic CRD features and provides a direct cause-effect demonstration.


Subject(s)
Hypobetalipoproteinemias , Malabsorption Syndromes
11.
Nutrients ; 13(2)2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33669729

ABSTRACT

Polyphenols (PLPs), phytochemicals found in a wide range of plant-based foods, have gained extensive attention in view of their antioxidant, anti-inflammatory, immunomodulatory and several additional beneficial activities. The health-promoting effects noted in animal models of various non-communicable diseases explain the growing interest in these molecules. In particular, in vitro and animal studies reported an attenuation of lipid disorders in response to PLPs. However, despite promising preclinical investigations, the effectiveness of PLPs in human dyslipidemia (DLP) is less clear and necessitates revision of available literature. Therefore, the present review analyzes the role of PLPs in managing clinical DLP, notably by dissecting their potential in ameliorating lipid/lipoprotein metabolism and alleviating hyperlipidemia, both postprandially and in long-term interventions. To this end, PubMed was used for article search. The search terms included polyphenols, lipids, triglycerides, cholesterol, LDL-cholesterol and /or HDL-cholesterol. The critical examination of the trials published to date illustrates certain benefits on blood lipids along with co-morbidities in participant's health status. However, inconsistent results document significant research gaps, potentially owing to study heterogeneity and lack of rigor in establishing PLP bioavailability during supplementation. This underlines the need for further efforts in order to elucidate and support a potential role of PLPs in fighting DLP.


Subject(s)
Dyslipidemias/drug therapy , Polyphenols/administration & dosage , Anti-Inflammatory Agents , Antioxidants , Cholesterol/blood , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Gastrointestinal Microbiome/drug effects , Humans , Hypolipidemic Agents , Lipids/blood , Oxidative Stress/drug effects , Phytotherapy , Triglycerides/blood
12.
Front Physiol ; 12: 629222, 2021.
Article in English | MEDLINE | ID: mdl-33584351

ABSTRACT

During the last two decades, a large body of information on the events responsible for intestinal fat digestion and absorption has been accumulated. In particular, many groups have extensively focused on the absorptive phase in order to highlight the critical "players" and the main mechanisms orchestrating the assembly and secretion of chylomicrons (CM) as essential vehicles of alimentary lipids. The major aim of this article is to review understanding derived from basic science and clinical conditions associated with impaired packaging and export of CM. We have particularly insisted on inborn metabolic pathways in humans as well as on genetically modified animal models (recapitulating pathological features). The ultimate goal of this approach is that "experiments of nature" and in vivo model strategy collectively allow gaining novel mechanistic insight and filling the gap between the underlying genetic defect and the apparent clinical phenotype. Thus, uncovering the cause of disease contributes not only to understanding normal physiologic pathway, but also to capturing disorder onset, progression, treatment and prognosis.

13.
Sci Rep ; 11(1): 3878, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33594093

ABSTRACT

Recent advances have added another dimension to the complexity of cardiometabolic disorders (CMD) by directly implicating the gastrointestinal tract as a key player. In fact, multiple factors could interfere with intestinal homeostasis and elicit extra-intestinal CMD. As oxidative stress (OxS), inflammation, insulin resistance and lipid abnormalities are among the most disruptive events, the aim of the present study is to explore whether proanthocyanidins (PACs) exert protective effects against these disorders. To this end, fully differentiated intestinal Caco-2/15 cells were pre-incubated with PACs with and without the pro-oxidant and pro-inflammatory iron/ascorbate (Fe/Asc). PACs significantly reduce malondialdehyde, a biomarker of lipid peroxidation, and raise antioxidant SOD2 and GPx via the increase of NRF2/Keap1 ratio. Likewise, PACs decrease the inflammatory agents TNFα and COX2 through abrogation of NF-κB. Moreover, according to crucial biomarkers, PACs result in lipid homeostasis improvement as reflected by enhanced fatty acid ß-oxidation, diminished lipogenesis, and lowered gluconeogenesis as a result of PPARα, γ and SREBP1c modulation. Since these metabolic routes are mainly regulated by insulin sensitivity, we have examined the insulin signaling pathway and found an upregulation of phosphoPI3K/Akt and downregulation of p38-MAPK expressions, indicating beneficial effects in response to PACs. Taken together, PACs display the potential to counterbalance OxS and inflammation in Fe/Asc-exposed intestinal cells, in association with an improvement of insulin sensitivity, which ameliorates lipid and glucose homeostasis.


Subject(s)
Inflammation/drug therapy , Insulin Resistance , Oxidative Stress/drug effects , Proanthocyanidins/therapeutic use , Caco-2 Cells , Carbohydrate Metabolism/drug effects , Drug Evaluation, Preclinical , Humans , Intestines/drug effects , Lipid Metabolism/drug effects , Proanthocyanidins/pharmacology
14.
Antioxid Redox Signal ; 34(3): 201-222, 2021 01 20.
Article in English | MEDLINE | ID: mdl-32338040

ABSTRACT

Significance: Metabolic syndrome (MetS) represents a cluster of cardiometabolic disorders, which accelerate the risk of developing diabetes, nonalcoholic fatty liver disease, and cardiovascular disorders such as atherosclerosis. Oxidative stress (OxS) and inflammation contribute to insulin resistance (IR) that greatly promotes the clinical manifestations of MetS components. Given the growing prevalence of this multifactorial condition, its alerting comorbidities, and the absence of specific drugs for treatment, there is an urgent need of prospecting for alternative nutraceutics as effective therapeutic agents for MetS. Recent Advances: There is a renewed interest in bioactive peptides derived from human and bovine milk proteins given their high potential in magnifying health benefits. Special attention has been paid to glycomacropeptide (GMP), a bioactive and soluble derivative from casein and milk whey, because of the wide range of its health-promoting functions perceived in the MetS and related complications. Critical Issues: In the present review, the challenging issue relative to clinical utility of GMP in improving MetS outcomes will be critically reported. Its importance in alleviating obesity, OxS, inflammation, IR, dyslipidemia, and hypertension will be underlined. The mechanisms of action will be analyzed, and the various gaps of knowledge in this area will be specified. Future Directions: Valuable data from cellular, preclinical, and clinical investigations have emphasized the preventive and therapeutic actions of GMP toward the MetS. However, additional efforts are needed to support its proofs of principle and causative relationship to translate its concept into the clinic. Antioxid. Redox Signal. 34, 201-222.


Subject(s)
Caseins/metabolism , Metabolic Syndrome/metabolism , Milk/metabolism , Peptide Fragments/metabolism , Animals , Humans , Milk/chemistry
15.
Antioxid Redox Signal ; 34(3): 252-278, 2021 01 20.
Article in English | MEDLINE | ID: mdl-32586106

ABSTRACT

Significance: Cardiometabolic disorders (CMD) are composed of a plethora of metabolic dysfunctions such as dyslipidemia, nonalcoholic fatty liver disease, insulin resistance, and hypertension. The development of these disorders is highly linked to inflammation and oxidative stress (OxS), two metabolic states closely related to physiological and pathological conditions. Given the drastically rising CMD prevalence, the discovery of new therapeutic targets/novel nutritional approaches is of utmost importance. Recent Advances: The tremendous progress in methods/technologies and animal modeling has allowed the clarification of phospholipase D (PLD) critical roles in multiple cellular processes, whether directly or indirectly via phosphatidic acid, the lipid product mediating signaling functions. In view of its multiple features and implications in various diseases, PLD has emerged as a drug target. Critical Issues: Although insulin stimulates PLD activity and, in turn, PLD regulates insulin signaling, the impact of the two important PLD isoforms on the metabolic syndrome components remains vague. Therefore, after outlining PLD1/PLD2 characteristics and functions, their role in inflammation, OxS, and CMD has been analyzed and critically reported in the present exhaustive review. The influence of functional foods and nutrients in the regulation of PLD has also been examined. Future Directions: Available evidence supports the implication of PLD in CMD, but only few studies emphasize its mechanisms of action and specific regulation by nutraceutical compounds. Therefore, additional investigations are first needed to clarify the functional role of nutraceutics and, second, to elucidate whether targeting PLDs with food compounds represents an appropriate therapeutic strategy to treat CMD. Antioxid. Redox Signal. 34, 252-278.


Subject(s)
Metabolic Syndrome/metabolism , Phospholipase D/metabolism , Animals , Humans , Metabolic Syndrome/drug therapy , Molecular Structure , Phosphatidylcholines/chemistry , Phosphatidylcholines/metabolism , Phospholipase D/antagonists & inhibitors
16.
Antioxidants (Basel) ; 9(10)2020 Oct 13.
Article in English | MEDLINE | ID: mdl-33066106

ABSTRACT

Lifestyle factors, especially diet and nutrition, are currently regarded as essential avenues to decrease modern-day cardiometabolic disorders (CMD), including obesity, metabolic syndrome, type 2 diabetes, and atherosclerosis. Many groups around the world attribute these trends, at least partially, to bioactive plant polyphenols given their anti-oxidant and anti-inflammatory actions. In fact, polyphenols can prevent or reverse the progression of disease processes through many distinct mechanisms. In particular, the crosstalk between polyphenols and gut microbiota, recently unveiled thanks to DNA-based tools and next generation sequencing, unravelled the central regulatory role of dietary polyphenols and their intestinal micro-ecology metabolites on the host energy metabolism and related illnesses. The objectives of this review are to: (1) provide an understanding of classification, structure, and bioavailability of dietary polyphenols; (2) underline their metabolism by gut microbiota; (3) highlight their prebiotic effects on microflora; (4) discuss the multifaceted roles of their metabolites in CMD while shedding light on the mechanisms of action; and (5) underscore their ability to initiate host epigenetic regulation. In sum, the review clearly documents whether dietary polyphenols and micro-ecology favorably interact to promote multiple physiological functions on human organism.

17.
Am J Physiol Endocrinol Metab ; 319(4): E689-E708, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32755302

ABSTRACT

Much more serious than the previous severe acute respiratory syndrome (SARS) coronavirus (CoV) outbreaks, the novel SARS-CoV-2 infection has spread speedily, affecting 213 countries and causing ∼17,300,000 cases and ∼672,000 (∼+1,500/day) deaths globally (as of July 31, 2020). The potentially fatal coronavirus disease (COVID-19), caused by air droplets and airborne as the main transmission modes, clearly induces a spectrum of respiratory clinical manifestations, but it also affects the immune, gastrointestinal, hematological, nervous, and renal systems. The dramatic scale of disorders and complications arises from the inadequacy of current treatments and absence of a vaccine and specific anti-COVID-19 drugs to suppress viral replication, inflammation, and additional pathogenic conditions. This highlights the importance of understanding the SARS-CoV-2 mechanisms of actions and the urgent need of prospecting for new or alternative treatment options. The main objective of the present review is to discuss the challenging issue relative to the clinical utility of plants-derived polyphenols in fighting viral infections. Not only is the strong capacity of polyphenols highlighted in magnifying health benefits, but the underlying mechanisms are also stressed. Finally, emphasis is placed on the potential ability of polyphenols to combat SARS-CoV-2 infection via the regulation of its molecular targets of human cellular binding and replication, as well as through the resulting host inflammation, oxidative stress, and signaling pathways.


Subject(s)
Coronavirus Infections/prevention & control , Pandemics/prevention & control , Phytotherapy/methods , Pneumonia, Viral/prevention & control , Polyphenols/therapeutic use , Primary Prevention/methods , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/history , History, 21st Century , Humans , Molecular Targeted Therapy/methods , Molecular Targeted Therapy/trends , Pandemics/history , Pneumonia, Viral/epidemiology , Pneumonia, Viral/history , Polyphenols/pharmacology , SARS-CoV-2 , Virus Replication/drug effects
18.
Nutrients ; 12(4)2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32331475

ABSTRACT

BACKGROUND: Metabolic Syndrome (MetS), a major worldwide concern for the public health system, refers to a cluster of key metabolic components, and represents a risk factor for diabetes and cardiovascular diseases. As oxidative stress (OxS) and inflammation are the major triggers of insulin sensitivity (IS), a cardinal MetS feature, the principal aim of the present work is to determine whether glycomacropeptide (GMP), a milk-derived bioactive peptide, exerts beneficial effects on their expression. METHODS: Fully differentiated intestinal Caco-2/15 cells are used to evaluate the preventive action of 2 mg/mL GMP against OxS and inflammation induced by the mixture iron-ascorbate (Fe/Asc) (200 µM:2 mM). The potency of GMP of decreasing the production of lipoproteins, including chylomicrons (CM), very-low-density lipoproteins (VLDL) and low-density lipoproteins (LDL) is also assessed. RESULTS: The administration of GMP significantly reduces malondialdehyde, a biomarker of lipid peroxidation, and raises superoxide dismutase 2 and glutathione peroxidase via the induction of the nuclear factor erythroid 2-related factor 2, a transcription factor, which orchestrates cellular antioxidant defenses. Similarly, GMP markedly lowers the inflammatory agents tumor necrosis factor-α and cyclooxygenase-2 via abrogation of the nuclear transcription factor-kB. Moreover, GMP-treated cells show a down-regulation of Fe/Asc-induced mitogen activated protein kinase pathway, suggesting greater IS. Finally, GMP decreases the production of CM, VLDL, and LDL. CONCLUSIONS: Our results highlight the effectiveness of GMP in attenuating OxS, inflammation and lipoprotein biogenesis, as well as improving IS, the key components of MetS. Further investigation is needed to elucidate the mechanisms mediating the preventive action of GMP.


Subject(s)
Ascorbic Acid/adverse effects , Caseins/pharmacology , Inflammation/prevention & control , Insulin Resistance , Intestinal Mucosa/metabolism , Iron/adverse effects , Lipoproteins/metabolism , Oxidative Stress/drug effects , Peptide Fragments/pharmacology , Caco-2 Cells , Glutathione Peroxidase/metabolism , Humans , Inflammation/etiology , Inflammation Mediators/metabolism , Malondialdehyde/metabolism , Metabolic Syndrome/etiology , Metabolic Syndrome/prevention & control , Mitogen-Activated Protein Kinases/metabolism , Superoxide Dismutase/metabolism
19.
J Lipid Res ; 60(10): 1755-1764, 2019 10.
Article in English | MEDLINE | ID: mdl-31409740

ABSTRACT

Genetic defects in SAR1B GTPase inhibit chylomicron (CM) trafficking to the Golgi and result in a huge intraenterocyte lipid accumulation with a failure to release CMs and liposoluble vitamins into the blood circulation. The central aim of this study is to test the hypothesis that SAR1B deletion (SAR1B-/- ) disturbs enterocyte lipid homeostasis (e.g., FA ß-oxidation and lipogenesis) while promoting oxidative stress and inflammation. Another issue is to compare the impact of SAR1B-/- to that of its paralogue SAR1A-/- and combined SAR1A-/- /B-/- To address these critical issues, we have generated Caco-2/15 cells with a knockout of SAR1A, SAR1B, or SAR1A/B genes. SAR1B-/- results in lipid homeostasis disruption, reflected by enhanced mitochondrial FA ß-oxidation and diminished lipogenesis in intestinal absorptive cells via the implication of PPARα and PGC1α transcription factors. Additionally, SAR1B-/- cells, which mimicked enterocytes of CM retention disease, spontaneously disclosed inflammatory and oxidative characteristics via the implication of NF-κB and NRF2. In most conditions, SAR1A-/- cells showed a similar trend, albeit less dramatic, but synergetic effects were observed with the combined defects of the two SAR1 paralogues. In conclusion, SAR1B and its paralogue are needed not only for CM trafficking but also for lipid homeostasis, prooxidant/antioxidant balance, and protection against inflammatory processes.


Subject(s)
Homeostasis , Intestinal Mucosa/enzymology , Lipid Metabolism , Monomeric GTP-Binding Proteins/metabolism , Oxidative Stress , Antioxidants/metabolism , Caco-2 Cells , Fatty Acids/metabolism , Gene Expression Regulation, Enzymologic , Gene Knockout Techniques , Humans , Inflammation/enzymology , Inflammation/metabolism , Inflammation/pathology , Lipid Peroxidation , Monomeric GTP-Binding Proteins/deficiency , Monomeric GTP-Binding Proteins/genetics , Perilipin-2/genetics , Perilipin-2/metabolism
20.
Nutrients ; 11(2)2019 Jan 22.
Article in English | MEDLINE | ID: mdl-30678232

ABSTRACT

Presently, undernutrition still goes undetected in pediatric hospitals despite its association with poor clinical outcomes and increased annual hospital costs, thus affecting both the patient and the health care system. The reported prevalence of undernutrition in pediatric patients seeking care or hospitalized varies considerably, ranging from 2.5 to 51%. This disparity is mostly due to the diversity of the origin of populations studied, methods used to detect and assess nutritional status, as well as the lack of consensus for defining pediatric undernutrition. The prevalence among inpatients is likely to be higher than that observed for the community at large, since malnourished children are likely to have a pre-existent disease or to develop medical complications. Meanwhile, growing evidence indicates that the nutritional status of sick children deteriorates during the course of hospitalization. Moreover, the absence of systematic nutritional screening in this environment may lead to an underestimation of this condition. The present review aims to critically discuss studies documenting the prevalence of malnutrition in pediatric hospitals in developed and in-transition countries and identifying hospital practices that may jeopardize the nutritional status of hospitalized children.


Subject(s)
Child Nutrition Disorders/diet therapy , Child Nutrition Disorders/etiology , Child, Hospitalized , Developing Countries , Hospitals, Pediatric/organization & administration , Child , Humans
SELECTION OF CITATIONS
SEARCH DETAIL