Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Cancers (Basel) ; 16(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38730615

ABSTRACT

Glyceraldehyde (GA) is a three-carbon monosaccharide that can be present in cells as a by-product of fructose metabolism. Bruno Mendel and Otto Warburg showed that the application of GA to cancer cells inhibits glycolysis and their growth. However, the molecular mechanism by which this occurred was not clarified. We describe a novel multi-modal mechanism by which the L-isomer of GA (L-GA) inhibits neuroblastoma cell growth. L-GA induces significant changes in the metabolic profile, promotes oxidative stress and hinders nucleotide biosynthesis. GC-MS and 13C-labeling was employed to measure the flow of carbon through glycolytic intermediates under L-GA treatment. It was found that L-GA is a potent inhibitor of glycolysis due to its proposed targeting of NAD(H)-dependent reactions. This results in growth inhibition, apoptosis and a redox crisis in neuroblastoma cells. It was confirmed that the redox mechanisms were modulated via L-GA by proteomic analysis. Analysis of nucleotide pools in L-GA-treated cells depicted a previously unreported observation, in which nucleotide biosynthesis is significantly inhibited. The inhibitory action of L-GA was partially relieved with the co-application of the antioxidant N-acetyl-cysteine. We present novel evidence for a simple sugar that inhibits cancer cell proliferation via dysregulating its fragile homeostatic environment.

2.
Clin Cancer Res ; 22(10): 2470-81, 2016 05 15.
Article in English | MEDLINE | ID: mdl-26631615

ABSTRACT

PURPOSE: Targeting BET proteins was previously shown to have specific antitumoral efficacy against MYCN-amplified neuroblastoma. We here assess the therapeutic efficacy of the BET inhibitor, OTX015, in preclinical neuroblastoma models and extend the knowledge on the role of BRD4 in MYCN-driven neuroblastoma. EXPERIMENTAL DESIGN: The efficacy of OTX015 was assessed in in vitro and in vivo models of human and murine MYCN-driven neuroblastoma. To study the effects of BET inhibition in the context of high MYCN levels, MYCN was ectopically expressed in human and murine cells. The effect of OTX015 on BRD4-regulated transcriptional pause release was analyzed using BRD4 and H3K27Ac chromatin immunoprecipitation coupled with DNA sequencing (ChIP-Seq) and gene expression analysis in neuroblastoma cells treated with OTX015 compared with vehicle control. RESULTS: OTX015 showed therapeutic efficacy against preclinical MYCN-driven neuroblastoma models. Similar to previously described BET inhibitors, concurrent MYCN repression was observed in OTX015-treated samples. Ectopic MYCN expression, however, did not abrogate effects of OTX015, indicating that MYCN repression is not the only target of BET proteins in neuroblastoma. When MYCN was ectopically expressed, BET inhibition still disrupted MYCN target gene transcription without affecting MYCN expression. We found that BRD4 binds to super-enhancers and MYCN target genes, and that OTX015 specifically disrupts BRD4 binding and transcription of these genes. CONCLUSIONS: We show that OTX015 is effective against mouse and human MYCN-driven tumor models and that BRD4 not only targets MYCN, but specifically occupies MYCN target gene enhancers as well as other genes associated with super-enhancers. Clin Cancer Res; 22(10); 2470-81. ©2015 AACR.


Subject(s)
Antineoplastic Agents/therapeutic use , N-Myc Proto-Oncogene Protein/metabolism , Nerve Tissue Proteins/antagonists & inhibitors , Transcription, Genetic/drug effects , Acetanilides/pharmacology , Animals , Cell Line , Cell Line, Tumor , Female , Gene Expression/drug effects , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Mice , Mice, Nude , Nerve Tissue Proteins/metabolism , Neuroblastoma/drug therapy , Neuroblastoma/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism
3.
Sci Transl Med ; 4(141): 141ra91, 2012 Jul 04.
Article in English | MEDLINE | ID: mdl-22764207

ABSTRACT

Activating anaplastic lymphoma kinase (ALK) mutations were recently detected in most familial and 10% of sporadic neuroblastomas. However, the role of mutated ALK in tumorigenesis remains elusive. We demonstrate that targeted expression of the most frequent and aggressive variant, ALK(F1174L), is tumorigenic in mice. Tumors resembled human neuroblastomas in morphology, metastasis pattern, gene expression, and the presence of neurosecretory vesicles as well as synaptic structures. This ALK-driven neuroblastoma mouse model precisely recapitulated the genetic spectrum of the disease. Chromosomal aberrations were syntenic to those in human neuroblastoma, including 17q gain and MYCN oncogene amplification. Targeted ALK(F1174L) and MYCN coexpression revealed a strong synergism in inducing neuroblastoma with minimal chromosomal aberrations, suggesting that fewer secondary hits are required for tumor induction if both oncoproteins are targeted. Treatment of ALK(F1174L) transgenic mice with the ALK inhibitor TAE-684 induced complete tumor regression, indicating that tumor cells were addicted to ALK(F1174L) activity. We conclude that an activating mutation within the ALK kinase domain is sufficient to induce neuroblastoma development, and ALK inhibitors show promise for treating human neuroblastomas harboring ALK mutations.


Subject(s)
Neuroblastoma/etiology , Neuroblastoma/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Anaplastic Lymphoma Kinase , Animals , Humans , Mice , Mice, Transgenic , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Pyrimidines/therapeutic use , Receptor Protein-Tyrosine Kinases/genetics
4.
Biotechniques ; 36(6): 1030-7, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15211754

ABSTRACT

The aim of this study was to determine the impact of ischemia on gene and protein expression profiles of healthy and malignant colon tissue and, thus, on screening studies for identification of molecular targets and diagnostic molecular patterns. Healthy and malignant colon tissue were snap-frozen at various time points (3-30 min) after colon resection. Gene and protein expression were determined by microarray (HG-U133A chips) and surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) technology (CM10 chips, SAX2 chips, and IMAC3Ni chips), respectively. Real-time reverse transcription PCR (RT-PCR) was used for comparative measurement of expression of particular genes. Initial changes of gene and protein expression profiles were already observed 5-8 min after colon resection. Fifteen minutes after surgery, 10%-15% of molecules, and after 30 min, 20% of all detectable genes and proteins, respectively, differed significantly from the baseline values. Significant changes of expression were found in most functional groups. As confirmed by real-time RT-PCR, this included not only known hypoxia-related molecules (HIF-1 alpha, c-fos, HO-1) but also cytoskeletal genes (e.g., CK20) and tumor-associated antigens (e.g., CEA). In conclusion, preanalytical factors, such as tissue ischemia time, dramatically affect molecular data. Control of these variables is mandatory to obtain reliable data in screening programs for molecular targets and diagnostic molecular patterns.


Subject(s)
Colonic Neoplasms/genetics , Colonic Neoplasms/surgery , Gene Expression Profiling/methods , Ischemia/genetics , Oligonucleotide Array Sequence Analysis/methods , Specimen Handling/methods , Tissue Preservation/methods , Artifacts , Humans , Reproducibility of Results , Sensitivity and Specificity , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
SELECTION OF CITATIONS
SEARCH DETAIL