Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
BMC Psychiatry ; 24(1): 608, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39256668

ABSTRACT

BACKGROUND: The proliferation of electronic cigarettes (e-cigarettes) has presented new challenges in public health, particularly among adolescents and young adults. While marketed as safer than tobacco and as cessation aids, e-cigarettes have raised concerns about their long-term health and psychosocial impacts, including potential links to increased suicidal behaviors. This study aims to evaluate the relationship between e-cigarette use and suicidal behaviors by conducting a systematic review of the current literature. METHODS: We searched PubMed, Web of Science, and EMBASE for studies up to March 10, 2024, examining the relationship between e-cigarette use and suicidal behaviors. Eligible studies included cross-sectional, longitudinal, retrospective, prospective, and case-control designs. Meta-analysis was performed to calculate pooled odds ratios (ORs). Newcastle Ottawa scale was used to assess the quality of studies. R software (V 4.3) was used to perform the meta-analysis. RESULTS: Our analysis included fourteen studies, predominantly from the US and Korea, with participants ranging from 1,151 to 255,887. The meta-analysis identified a significant association between e-cigarette use and an increased risk of suicidal ideation (OR = 1.489, 95% CI: 1.357 to 1.621), suicide attempts (OR = 2.497, 95% CI: 1.999 to 3.996), and suicidal planning (OR = 2.310, 95% CI: 1.810 to 2.810). Heterogeneity was noted among the studies. CONCLUSION: E-cigarette use is significantly associated with the risk of suicidal behaviors, particularly among adolescents. The findings underscore the necessity for caution in endorsing e-cigarettes as a safer smoking alternative and call for more extensive research to understand the underlying mechanisms. Public health strategies should be developed to address and mitigate the risks of suicidal behaviors among e-cigarette users.


Subject(s)
Suicidal Ideation , Suicide, Attempted , Vaping , Humans , Vaping/psychology , Suicide, Attempted/statistics & numerical data , Suicide, Attempted/psychology , Electronic Nicotine Delivery Systems/statistics & numerical data , Adolescent , Young Adult
2.
BMC Infect Dis ; 24(1): 847, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39169304

ABSTRACT

BACKGROUND: Multisystem Inflammatory Syndrome in Children (MIS-C) associated with SARS-CoV-2 can lead to severe cardiovascular complications. Anakinra, an interleukin-1 receptor antagonist, is proposed to benefit the hyperinflammatory state of MIS-C, potentially improving cardiac function. This systematic review evaluated the effectiveness of early Anakinra administration on cardiac outcomes in children with MIS-C. METHODS: A comprehensive search across PubMed, Embase, and Web of Science until March 2024 identified studies using Anakinra to treat MIS-C with reported cardiac outcomes. Observational cohorts and clinical trials were included, with data extraction focusing on cardiac function metrics and inflammatory markers. Study quality was assessed using the Newcastle-Ottawa Scale. RESULTS: Six studies met the inclusion criteria, ranging from retrospective cohorts to prospective clinical studies, predominantly from the USA. Anakinra dosages ranged from 2.3 to 10 mg/kg based on disease severity. Several studies showed significant improvements in left ventricular ejection fraction and reductions in inflammatory markers like C-reactive protein, suggesting Anakinra's role in enhancing cardiac function and mitigating inflammation. However, findings on vasoactive support needs were mixed, and some studies did not report significant changes in acute cardiac support requirements. CONCLUSION: Early Anakinra administration shows potential for improving cardiac function and reducing inflammation in children with MIS-C, particularly those with severe manifestations. However, the existing evidence is limited by the observational nature of most studies and lacks randomized controlled trials (RCTs). Further high-quality RCTs are necessary to conclusively determine Anakinra's effectiveness and optimize its use in MIS-C management for better long-term cardiac outcomes and standardized treatment protocols.


Subject(s)
COVID-19 , Interleukin 1 Receptor Antagonist Protein , Systemic Inflammatory Response Syndrome , Humans , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Systemic Inflammatory Response Syndrome/drug therapy , Child , COVID-19/complications , SARS-CoV-2/drug effects , COVID-19 Drug Treatment , Treatment Outcome , Child, Preschool
3.
Chemosphere ; : 142804, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39029708

ABSTRACT

Graphene quantum dots (GQDs) are a novel carbon nanomaterial from the graphene family due to their unique physicochemical properties and diverse range of applications. However, in terms of the sustainable utility of GQDs, their synthesis methods are the main roadblock because of their high production costs and the release of toxic byproducts during the production processes. Thus, the search for sustainable and economical fabrication methods for preparing GQDs is one of the most essential areas of research for their practical applications. In this context, lignocellulosic biomass (LCB) wastes are a prime choice for the fabrication of GQDs due to their high carbon and cellulose content, which are favorable for being employed as precursors and reducing agents Additionally, LCBs are a prime source of potential bioenergy production, which is currently a key research hotspot to combat environmental pollution, global warming, and energy crises. Therefore, the present review provides feasibility for sustainable and environmentally friendly fabrication of GQDs using LCB wastes for their possible utility in cellulosic biofuel production technology improvement. Furthermore, the prospective of using these GQDs as catalysts in bioenergy production for the development of low-cost biomass-based biofuel production technology has been discussed along with the existing limitations and their sustainable recommendation.

4.
Biomater Adv ; 161: 213898, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38796957

ABSTRACT

In this study, we report the preparation of bio-inspired binary CuO/ZnO nanocomposite (bb-CuO/ZnO nanocomposite) via the biological route using Bauhinia variegata flower extract following hydrothermal treatment. The prepared bb-CuO/ZnO nanocomposite was electrophoretically deposited (EPD) on indium tin oxide (ITO) substrate to develop bb-CuO/ZnO/ITO biosensing electrode which is employed for the determination of vitamin B2 (Riboflavin) through electrochemical techniques. Physicochemical assets of the prepared bb-CuO/ZnO nanocomposite have been extensively evaluated and make use of different characterization techniques including powder XRD, FT-IR, AFM, SEM, TEM, EDX, XPS, Raman, and TGA. Electrochemical characteristics of the bb-CuO/ZnO/ITO biosensing electrode have been studied towards vitamin B2 determination. Furthermore, different biosensing parameters such as response time, reusability, stability, interference, and real sample analysis were also estimated. From the linear plot of scan rate, charge transfer rate constant (Ks), surface concentration of electrode (γ), and diffusion coefficient (D) have been calculated, and these are found to be 6.56 × 10-1 s-1, 1.21 × 10-7 mol cm-2, and 6.99 × 10-3 cm2 s-1, respectively. This biosensor exhibits the linear range of vitamin B2 detection from 1 to 40 µM, including sensitivity and limit of detection (LOD) of 1.37 × 10-3 mA/µM cm2 and 0.254 µM, respectively. For higher concentration range detection linearity is 50-100 µM, with sensitivity and the LOD of 1.26 × 10-3 mA/µM cm2 and 0.145 µM, respectively. The results indicate that the bio-inspired nanomaterials are promising sustainable biosensing platforms for various food and health-based biosensing devices.


Subject(s)
Bauhinia , Biosensing Techniques , Copper , Electrochemical Techniques , Flowers , Nanocomposites , Plant Extracts , Riboflavin , Zinc Oxide , Copper/chemistry , Copper/analysis , Plant Extracts/chemistry , Nanocomposites/chemistry , Electrochemical Techniques/methods , Flowers/chemistry , Biosensing Techniques/methods , Zinc Oxide/chemistry , Bauhinia/chemistry , Riboflavin/analysis , Riboflavin/chemistry , Electrodes , Limit of Detection
5.
Article in English | MEDLINE | ID: mdl-38568765

ABSTRACT

This paper presents a compact and low-cost on-chip sensor and readout circuit. The sensor achieves high-resolution 5-degrees-of-freedom (DoF) tracking (x, y, z, yaw, and pitch). With the help of an external wire wound sensor, it can also achieve high-resolution 6-degrees-of-freedom (DoF) tracking (x, y, z, yaw, pitch, and roll angles). The sensor uses low-frequency magnetic fields to detect the position and orientation of instruments, providing a viable alternative to using X-rays in image-guided surgery. To measure the local magnetic field, a highly miniaturised on-chip magnetic sensor capable of sensing the magnetic field has been developed incorporating an on-chip magnetic sensor coil, analog-front end, continuous-time ΔΣ analog-to-digital converter (ADC), LVDS transmitter, bandgap reference, and voltage regulator. The microchip is fabricated using 65 nm CMOS technology and occupies an area of 1.06 mm2, the smallest reported among similar designs to the best of our knowledge. The 5-DoF system accurately navigates with a precision of 1.1 mm within the volume-of-intrest (VOI) of 15×15×15 cm3. The 6-DoF system achieves a navigation accuracy of 0.8 mm and an angular error of 1.1 degrees in the same VOI. These results were obtained at a 20 Hz update rate in benchtop characterisation. The prototype sensor demonstrates accurate position tracking in real-life pre-clinical in-vivo settings within the porcine lung of a live swine, achieving a reported worst-case registration accuracy of 5.8 mm.

6.
Mol Divers ; 28(1): 61-71, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36609739

ABSTRACT

An efficient visible light mediated, eosin Y catalyzed direct C-H oxidative amination of benzoxazoles with secondary amines has been developed, which providing a straightforward, green, and environmentally benign access to a wide variety of substituted benzoxazole-2-amines under mild reaction conditions. The biological studies such as drug-likeness and molecular docking are also carried out on the molecule.


Subject(s)
Amines , Benzoxazoles , Amination , Molecular Docking Simulation , Catalysis , Molecular Structure , Metals , Light
7.
Article in English | MEDLINE | ID: mdl-37910294

ABSTRACT

Cancer is a major public health concern because it is one of the main causes of morbidity and mortality worldwide. As a result, numerous studies have reported the development of new therapeutic compounds with the aim of selectively treating cancer while having little negative influence on healthy cells. In this context, earthworm coelomic fluid has been acknowledged as a rich source of several bioactive substances that may exhibit promising anticancer activity. Therefore, the objective of the present review is to evaluate the findings of the reported studies exploring the antitumor effects of coelomic fluid in the context of its possible utilization as a natural therapeutic agent to cure different types of cancer. The possible mechanisms underlying the coelomic fluid's anticancerous potential as well as the possibility for future development of cutting-edge therapeutic agents utilizing coelomic fluid-derived natural bioactive compounds to treat cancer disorders have been discussed along with future challenges. In addition, the feasibility of encapsulation of bioactive compounds derived from coelomic fluid with nanomaterials that could be further explored to attain more effective anticancer competence is discussed.

8.
Polymers (Basel) ; 15(21)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37960019

ABSTRACT

Heavy metal contamination in water resources is a major issue worldwide. Metals released into the environment endanger human health, owing to their persistence and absorption into the food chain. Cadmium is a highly toxic heavy metal, which causes severe health hazards in human beings as well as in animals. To overcome the issue, current research focused on cadmium ion removal from the polluted water by using porous magnetic chitosan composite produced from Kaphal (Myrica esculenta) leaves. The synthesized composite was characterized by BET, XRD, FT-IR, FE-SEM with EDX, and VSM to understand the structural, textural, surface functional, morphological-compositional, and magnetic properties, respectively, that contributed to the adsorption of Cd. The maximum Cd adsorption capacities observed for the Fe3O4 nanoparticles (MNPs) and porous magnetic chitosan (MCS) composite were 290 mg/g and 426 mg/g, respectively. Both the adsorption processes followed second-order kinetics. Batch adsorption studies were carried out to understand the optimum conditions for the fast adsorption process. Both the adsorbents could be regenerated for up to seven cycles without appreciable loss in adsorption capacity. The porous magnetic chitosan composite showed improved adsorption compared to MNPs. The mechanism for cadmium ion adsorption by MNPs and MCS has been postulated. Magnetic-modified chitosan-based composites that exhibit high adsorption efficiency, regeneration, and easy separation from a solution have broad development prospects in various industrial sewage and wastewater treatment fields.

9.
Mol Biotechnol ; 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37882940

ABSTRACT

The development of sustainable and renewable energy production is in high demand, and bioenergy production via microbial digestion of organic wastes is in prime focus. Biogas produced from the microbial digestion of organic waste is the most promising among existing biofuel options. In this context, biogas production from lignocellulosic biomass is one of the most viable and promising technologies for sustainable biofuel production. In the present review, an assessment and feasibility advancement have been presented towards the sustainable production of biogas from rice straw waste. Rice straw (RS) is abundantly available, contains a high composition of cellulose, and is found under the category of lignocellulosic waste, but it may cause severe environmental issues if not treated. Whereas, due to its high cellulose and inorganic content, lower cost, and huge availability, this waste can be effectively valorized into biogas production at a lower cost on a commercial scale. Therefore, the present review provides existing insight in this area by focusing on the operational parameter's improvement and advancement in the research for the expansion of mass-scale production at a lower cost. Thus, the presented review analyzed the processing parameters status, associated challenges, and positive endnote solutions for more sustainable viability for biogas production.

10.
Int J Biol Macromol ; 253(Pt 4): 126886, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37709228

ABSTRACT

Zinc-based nanostructures are known for their numerous potential biomedical applications. In this context, the biosynthesis of nanostructures using plant extracts has become a more sustainable and promising alternative to effectively replace conventional chemical methods while avoiding their toxic impact. In this study, following a low-temperature calcination process, a green synthesis of Zn-hydroxide-based nanostructure has been performed using an aqueous extract derived from the leaves of Litchi chinensis, which is employed as a lignocellulose waste biomass known to possess a variety of phytocompounds. The biogenic preparation of Zn-hydroxide based nanostructures is enabled by bioactive compounds present in the leaf extract, which act as reducing and capping agents. In order to evaluate its physicochemical characteristics, the produced Zn-hydroxide-based nanostructure has been subjected to several characterization techniques. Further, the multifunctional properties of the prepared Zn-hydroxide-based nanostructure have been evaluated for antioxidant, antimicrobial, and anticancer activity. The prepared nanostructure showed antibacterial efficacy against Bacillus subtilis and demonstrated its anti-biofilm activity as evaluated through the Congo red method. In addition, the antioxidant activity of the prepared nanostructure has been found to be dose-dependent, wherein 91.52 % scavenging activity could be recorded at 200 µg/ml, with an IC50 value of 45.22 µg/ml, indicating the prepared nanostructure has a high radical scavenging activity. Besides, the in vitro cytotoxicity investigation against HepG2 cell lines explored that the as-prepared nanostructure exhibited a higher cytotoxic effect and 73.21 % cell inhibition could be noticed at 25.6 µg/ml with an IC50 of 2.58 µg/ml. On the contrary, it was found to be significantly lower in the case of HEK-293 cell lines, wherein ~47.64 % inhibition could be noticed at the same concentration. These findings might be further extended to develop unique biologically derived nanostructures that can be extensively evaluated for various biomedical purposes.


Subject(s)
Litchi , Metal Nanoparticles , Nanostructures , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Litchi/chemistry , Biomass , HEK293 Cells , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Hydroxides , Plant Extracts/pharmacology , Plant Extracts/chemistry , Metal Nanoparticles/chemistry
11.
Mol Neurobiol ; 60(9): 5378-5394, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37314657

ABSTRACT

This study aimed to assess the efficacy of ethanolic extract of Solanum torvum L. fruit (EESTF) containing solasodine in treating chronic constriction injury (CCI)-induced neuropathic pain in rats. Three-dimensional (3D) simulation studies of solasodine binding were conducted on the TRPV1 receptor, IL-6, and TNF-α structures. For in vivo justification, an assessment of behavioral, biochemical, and histological changes was designed after a CCI-induced neuropathic pain model in rats. On days 7, 14, and 21, CCI significantly increased mechanical, thermal, and cold allodynia while producing a functional deficit. IL-6, TNF-α, TBARS, and MPO levels also increased. SOD levels of catalase and reduced glutathione levels also decreased. Administration of pregabalin (30 mg/kg, oral), solasodine (25 mg/kg, oral), and EESTF (100 and 300 mg/kg, oral) significantly reduced CCI-induced behavioral and biochemical changes (P < 0.05). The protective nature of EESTF was also confirmed by histological analysis. Capsaicin, a TRPV1 receptor agonist, abolished the antinociceptive effects of EESTF when used previously. From the observations of the docking studies, solasodine acted as an antagonist at TRPV1, whereas the docking scores of solasodine against TNF-α and IL-6 were reported to be -11.2 and -6.04 kcal/mol, respectively. The attenuating effect of EESTF might be related to its antagonistic effects on TRPV1, suppression of cytokines, and anti-inflammatory and antioxidant properties.


Subject(s)
Cytokines , Neuralgia , Rats , Animals , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6 , Fruit/metabolism , Constriction , Neuralgia/complications , Neuralgia/drug therapy , Neuralgia/prevention & control , Hyperalgesia/complications , Hyperalgesia/drug therapy , Hyperalgesia/metabolism
12.
Int J Biol Macromol ; 238: 124284, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37003389

ABSTRACT

Co-fermentation via co-cultured bacterial microorganisms to develop enzymes in solid-state fermentation (SSF) is a promising approach. This strategy is imperative in a series of sustainable and effective approaches due to superior microbial growth and the use of a combination of inexpensive feedstocks for enzyme production wherein mutually participating enzyme-producing microbial communities are employed. Moreover, the addition of nanomaterials to this technique may aid in its prominent advantage of enhancing enzyme production. This strategy may be able to decrease the overall cost of the bioprocessing to produce enzymes by further implementing biogenic, route-derived nanomaterials as catalysts. Therefore, the present study attempts to explore endoglucanase (EG) production using a bacterial coculture system by employing two different bacterial strains, namely, Bacillus subtilis and Serratia marcescens under SSF in the presence of a ZnMg hydroxide-based nanocomposite as a nanocatalyst. The nanocatalyst based on ZnMg hydroxide has been prepared via green synthesis using Litchi waste seed, while SSF for EG production has been conducted using cofermentation of litchi seed (Ls) and paddy straw (Ps) waste. Under an optimized substrate concentration ratio of 5:6 Ps:Ls and in the presence of 2.0 mg of nanocatalyst, the cocultured bacterial system produced 1.6 IU/mL of EG enzyme, which was ~1.33 fold higher as compared to the control. Additionally, the same enzyme showed its stability for 135 min in the presence of 1.0 mg of nanocatalyst at 38 °C. The nanocatalyst has been synthesized using the green method, wherein waste litchi seed is used as a reducing agent, and the nanocatalyst could be employed to improve the production and functional stability of crude enzymes. The findings of the present study may have significant application in lignocellulosic-based biorefinaries and cellulosic waste management.


Subject(s)
Cellulase , Litchi , Nanocomposites , Cellulase/chemistry , Litchi/metabolism , Fermentation , Bacteria/metabolism , Seeds/metabolism
13.
Sci Total Environ ; 876: 162765, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-36906037

ABSTRACT

Cellulases are the one of the most highly demanded industrial biocatalysts due to their versatile applications, such as in the biorefinery industry. However, relatively poor efficiency and high production costs are included as the key industrial constraints that hinder enzyme production and utilization at economic scale. Furthermore, the production and functional efficiency of the ß-glucosidase (BGL) enzyme is usually found to be relatively low among the cellulase cocktail produced. Thus, the current study focuses on fungi-mediated improvement of BGL enzyme in the presence of a rice straw-derived graphene-silica-based nanocomposite (GSNCs), which has been characterized using various techniques to analyze its physicochemical properties. Under optimized conditions of solid-state fermentation (SSF), co-fermentation using co-cultured cellulolytic enzyme has been done, and maximum enzyme production of 42 IU/gds FP, 142 IU/gds BGL, and 103 IU/gds EG have been achieved at a 5 mg concentration of GSNCs. Moreover, at a 2.5 mg concentration of nanocatalyst, the BGL enzyme showed its thermal stability at 60°C and 70 °C by holding its half-life relative activity for 7 h, while the same enzyme demonstrated pH stability at pH 8.0 and 9.0 for the 10 h. This thermoalkali BGL enzyme might be useful for the long-term bioconversion of cellulosic biomass into sugar.


Subject(s)
Cellulase , Graphite , Oryza , Fermentation , Oryza/chemistry , Cellulase/chemistry , Cellulase/metabolism , beta-Glucosidase/metabolism , Hydrolysis
14.
Anal Chem ; 95(7): 3656-3665, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36749750

ABSTRACT

We design and build a novel light-amplified electrochemical impedimetric device based on the CISS effect to detect DNA hybridization using a hybrid quantum dot (QD)-DNA monolayer on a ferromagnetic (FM) Ni/Au thin film for the first time. Using spin as a detection tool, the current research considers the chiral-induced spin selectivity (CISS) phenomenon. After injecting a spin current into the QD-DNA system with opposite polarities (up and down), the impedimetric device revealed a large differential change in the charge-transfer resistance (ΔRct) of ∼100 ohms for both spins. Nearly, a threefold increase in the ΔRct value to ∼270 ohms is observed when light with a wavelength of 532 nm is illuminated on the sample, owing to the amplified CISS effect. The yield of spin polarization as extracted from the Nyquist plot increases by a factor of more than 2 when exposed to light, going from 6% in the dark to 13% in the light. The impact of light on the CISS effect was further corroborated by the observation of the spin-dependent asymmetric quenching of photoluminescence (PL) in the same hybrid system. These observations are absent in the case of a noncomplementary QD-DNA system due to the absence of a helical structure in DNA. Based on this, we develop a spin-based DNA hybridization sensor and achieve a limit of detection of 10 fM. These findings open a practical path for the development of spin-based next-generation impedimetric DNA sensors and point-of-care devices.


Subject(s)
Quantum Dots , DNA/chemistry , Nucleic Acid Hybridization
15.
Int J Food Microbiol ; 388: 110069, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36640563

ABSTRACT

Microorganisms have been extensively studied and used to produce a wide range of enzymes and bioactive substances for a number of uses. Cellulases have also been widely used for a variety of bioprocessing and biotransformation purposes and are acknowledged as the essential enzymes for industrial applications. Broad industrial applications and huge demand essentially require mass-scale and low-cost production of cellulase enzyme. Nevertheless, low-cost production of cellulase enzyme at industrial-level finds certain issues, and this may be mainly associated with the unavailability of cheap and effective substrate to be utilized in fermentation process. In this context, cellulosic wastes are counted as one of the suitable bioresources and have been well explored for low-cost and highly efficient cellulase enzyme productions. Further, banana peels waste is considered as the high cellulose & sugar containing food wastes which is renewable and hugely available worldwide. Therefore, the present review explores the possible utilizations of banana peels as a potential food waste to be employed as substrate to produce cellulase enzymes. Availability and compositional analysis of banana peels has been explored for the microbial cellulase production based on reported studies. Further, this review explores the applications of cellulase enzymes as antimicrobial agents. Based on the available studies and their evaluation, potential limitations and future suggestions for the production of cellulase enzymes and their applications as antibacterial agents have been provided, which have a high potential for numerous biomedical applications and may offer a new opportunity for industrial utility.


Subject(s)
Anti-Infective Agents , Cellulase , Cellulases , Musa , Refuse Disposal , Cellulase/metabolism , Musa/metabolism , Food , Cellulases/metabolism , Fermentation
16.
Luminescence ; 38(7): 999-1010, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35997211

ABSTRACT

Nanomaterials are gaining enormous interests due to their novel applications that have been explored nearly in every field of our contemporary society. In this scenario, preparations of nanomaterials following green routes have attracted widespread attention in terms of sustainable, reliable, and environmentally friendly practices to produce diverse nanostructures. In this review, we summarize the fundamental processes and mechanisms of green synthesis approaches of TiO2 nanoparticles (NPs). We explore the role of plants and microbes as natural bioresources to prepare TiO2 NPs. Particularly, focus has been made to explore the potential of TiO2 -based nanomaterials to design a variety of sensing platforms by exploiting the photocatalysis efficiency under the influence of a light source. These types of sensing are of massive importance for monitoring environmental pollution and therefore for inventing advanced strategies to remediate hazardous pollutants and offer a clean environment.


Subject(s)
Nanoparticles , Nanostructures , Nanotechnology , Nanostructures/chemistry , Environmental Pollution
17.
Int J Food Microbiol ; 386: 110016, 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36435097

ABSTRACT

Applications for nanotechnology, which is constantly gaining prominence, have been found in a variety of industrial applications. Due to the multiple benefits associated with it, including an eco-friendly, pollution-free, cost-effective, and non-toxic synthesis method, the green way to synthesize nanostructures utilizing waste biomasses has become one of the key focuses of the current researches globally. Additionally, lignocellulasic biomass (LCB), which is a waste of the food crops, can be used as one of the potential substrates for the synthesis of a variety of nanostructures. Among different types of LCB, rice straw is a potential food waste biomass and can be efficiently employed during the synthesis of different types of nanostructures for a range of technological applications. Here, diverse phenolic compounds found in rice straw as well as reducing sugars can be used as natural reducing and capping agents to prepare a range of nanostructures. Based on the aforementioned facts, the objective of this review is to investigate the viability of using rice straw to produce nanostructured materials using rice straw as a renewable biosource following an environmentally friendly method. Additionally, it is noted that various organic compounds present on the surface of nanostructures produced using rice straw extract/hydrolyzate through a green approach may be more successful in terms of antibacterial efficacy, which might be of considerable interest for a variety of biomedical applications. Based on the possibility of enhancing the antimicrobial activity of developed nanostructures, the review also provides overview on the feasibility, characteristics, and availability of using rice straw extract in the synthesis of nanostructures. Additionally, the constraints of the present and potential futures of the green synthesis methods using rice straw wastes have been explored.


Subject(s)
Nanostructures , Oryza , Refuse Disposal , Food , Anti-Bacterial Agents , Plant Extracts
18.
Bioresour Technol ; 369: 128219, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36343777

ABSTRACT

Microbial cellulases are the enzymes used in numerous industrial biotechnological applications. Efficiency of celluloytic cocktails plays a key role in the conversion of biomass into biofuels, but limited production, high cost and low efficiency are the main obstacles to sustainable biorefining. The current work aims to establish a feasible approach for boosting the production of fungal endoglucanse (EG) and its functional stability utilizing nanocomposite materials based on manganese oxide. Herein, aqueous extract from mixed fruit waste was used to synthesize the nanocomposite sample, which was subsequently subjected to several characterization techniques for analysis. Following the solid-state fermentation of paddy straw, and by employing 75 mg nanocomposite, 192 IU/gds EG was produced under the optimal conditions, while 19 IU/gds FP and 98 IU/gds BGL production were recorded. The crude EG enzyme treated with nanocomposite also shows complete stability at pH 5.0 for 3.5 h while retaining thermal activity at 70 °C for 4 h.


Subject(s)
Cellulases , Fruit , Porosity , Oxides , Fermentation
19.
Bioresour Technol ; 369: 128471, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36521823

ABSTRACT

Biomass to biofuels production technology appears to be one of the most sustainable strategies among various renewable energy resources. Herein, pretreatment is an unavoidable and key step to increase free cellulose availability and digestibility to produce green fuels. Various existing pretreatment technologies of lignocellulosics biomasses (LCBs) face distinct challenges e.g., energy consuming, cost intensive, may lead partial removal of lignin, complex inhibitors production as well as may cause environmental pollutions. These, limitations may be overcome with the application of nanomaterials, employed as nanocatalysts during the pretreatment process of LCBs. In this prospect, the present review focuses and summarizes results of numerous studies and exploring the utilizations of magnetic, carbon based nanostructure, and nanophotocatalysts mediated pretreatment processes along with their possible mechanisms to improve the biofuels production compared to conventional chemical based pretreatment approaches. Furthermore, different aspects of nanomaterials based pretreatment methods with their shortcomings and future prospects have been discussed.


Subject(s)
Biofuels , Nanostructures , Biomass , Lignin/chemistry
20.
ACS Omega ; 7(42): 37705-37713, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36312421

ABSTRACT

In this work, we demonstrate chiral-induced spin selectivity (CISS)-based label-free electrochemical impedimetric detection of radiation-induced DNA damage using the electrons' spin as a novel tool of sensing. For this, self-assembled monolayers (SAMs) of short ds-DNA (of length 7.14 nm) are prepared on arrays of multilayer thin film devices comprising a gold overlay (500 µm diameter with 10 nm thickness) on a nickel thin film (100 nm) fabricated by the physical vapor deposition technique. Subsequently, the SAMs of ds-DNA are exposed to ultraviolet C (UVC) radiation for a prolonged period of 8 h to induce structural perturbations in DNA. The susceptibility of DNA to radiation-induced damage was probed by recording the spin-dependent electrochemical impedimetric spectra, wherein a continuous sinusoidal wave of the amplitude of 10 mV was superimposed on DC bias in the frequency range of 100-105 Hz, with simultaneous spin injection through the attached DNA. The inherent correlation between the charge-transfer resistance (R ct) and the spin selectivity of electrons through DNA was taken into account for the detection of DNA damage for the first time with a limit of detection achieved up to 10 picomolar concentrations of DNA. As the spin-polarized electrons directly probe the structural symmetry, it is robust against perturbation from electronic signals usually found in conventional electrochemical biosensors.

SELECTION OF CITATIONS
SEARCH DETAIL