Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters








Publication year range
1.
J Bacteriol ; 205(4): e0045122, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36951588

ABSTRACT

Considerable progress has been made toward elucidating the mechanism of Staphylococcus aureus aggregation in synovial fluid. In this study, aggregate morphology was assessed following incubation under several simulated postsurgical joint conditions. Using fluorescently labeled synovial fluid polymers, we show that aggregation occurs through two distinct mechanisms: (i) direct bridging between S. aureus cells and host fibrinogen and (ii) an entropy-driven depletion mechanism facilitated by hyaluronic acid and albumin. By screening surface adhesin-deficient mutants (clfA, clfB, fnbB, and fnbA), we identified the primary genetic determinant of aggregation in synovial fluid to be clumping factor A. To characterize this bridging interaction, we employed an atomic force microscopy-based approach to quantify the binding affinity of either wild-type S. aureus or the adhesin mutant to immobilized fibrinogen. Surprisingly, we found there to be cell-to-cell variability in the binding strength of the bacteria for immobilized fibrinogen. Superhigh-resolution microscopy imaging revealed that fibrinogen binding to the cell wall is heterogeneously distributed at both the single cell and population levels. Finally, we assessed the antibiotic tolerance of various aggregate morphologies arising from newly deciphered mechanisms of polymer-mediated synovial fluid-induced aggregation. The formation of macroscopic aggregates under shear was highly tolerant of gentamicin, while smaller aggregates, formed under static conditions, were susceptible. We hypothesize that aggregate formation in the joint cavity, in combination with shear, is mediated by both polymer-mediated aggregation mechanisms, with depletion forces enhancing the stability of essential bridging interactions. IMPORTANCE The formation of a bacterial biofilm in the postsurgical joint environment significantly complicates the resolution of an infection. To form a resilient biofilm, incoming bacteria must first survive the initial invasion of the joint space. We previously found that synovial fluid induces the formation of Staphylococcus aureus aggregates, which may provide rapid protection during the early stages of infection. The state of the host joint environment, including the presence of fluid flow and fluctuating abundance of synovial fluid polymers, determines the rate and size of aggregate formation. By expanding on our knowledge of the mechanism and pathogenic implications of synovial fluid-induced aggregation, we hope to contribute insights for the development of novel methods of prevention and therapeutic intervention.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Humans , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Biofilms , Staphylococcal Infections/microbiology , Fibrinogen/metabolism , Fibrinogen/pharmacology
2.
mBio ; 13(2): e0023622, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35254134

ABSTRACT

Early bacterial survival in the postsurgical joint is still a mystery. Recently, synovial fluid-induced aggregation was proposed as a potential mechanism of bacterial protection upon entry into the joint. As synovial fluid is secreted back into the joint cavity following surgery, rapid fluctuations in synovial fluid concentrations, composition, and viscosity occur. These changes, along with fluid movement resulting from postoperative joint motion, modify the environment and potentially affect the kinetics of aggregate formation. Through this work, we sought to evaluate the influence of exposure time, synovial fluid concentration, viscosity, and fluid dynamics on aggregation. Furthermore, we aimed to elucidate the primary mechanism of aggregate formation by assessing the interaction of bacterial adhesins with the synovial fluid polymer fibrinogen. Following incubation under each simulated postoperative joint condition, the aggregates were imaged using confocal microscopy. Our analysis revealed the formation of two distinct aggregate phenotypes, depending on whether the incubation was conducted under static or dynamic conditions. Using a surface adhesin mutant, we have narrowed down the genetic determinants for synovial fluid aggregate formation and identified essential host polymers. We report here that synovial fluid-induced aggregation is influenced by various changes specific to the postsurgical joint environment. While we now have evidence that select synovial fluid polymers facilitate bridging aggregation through essential bacterial adhesins, we suspect that their utility is limited by the increasing viscosity under static conditions. Furthermore, dynamic fluid movement recovers the ability of the bacteria with surface proteins present to aggregate under high-viscosity conditions, yielding large, globular aggregates. IMPORTANCE Infection is a major complication of knee and hip joint replacement surgery, which is used to treat arthritis or joint damage. We have shown that Staphylococcus aureus, a common bacterial pathogen, aggregates upon contact with synovial fluid. Within seconds, the bacterial cells interact with synovial fluid polymers in the joint fluid through their cell wall adhesins. The rapid formation of these aggregates likely aids in early bacterial survival in the joint, potentially contributing to the likelihood of developing an infection. By strengthening our basic understanding of the mechanics of synovial fluid aggregate formation under clinically relevant conditions, we hope to expand the knowledge of how to prevent or disrupt aggregation and reduce and more successfully treat these joint infections.


Subject(s)
Arthritis, Infectious , Staphylococcal Infections , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Humans , Hydrodynamics , Polymers/metabolism , Staphylococcal Infections/metabolism , Staphylococcus aureus/genetics , Synovial Fluid/metabolism , Synovial Fluid/microbiology , Viscosity
3.
Front Cell Infect Microbiol ; 12: 833269, 2022.
Article in English | MEDLINE | ID: mdl-35237533

ABSTRACT

There is a critical need to accurately diagnose, prevent, and treat biofilms in humans. The biofilm forming P. aeruginosa bacteria can cause acute and chronic infections, which are difficult to treat due to their ability to evade host defenses along with an inherent antibiotic-tolerance. Using an untargeted NMR-based metabolomics approach, we identified statistically significant differences in 52 metabolites between P. aeruginosa grown in the planktonic and lawn biofilm states. Among them, the metabolites of the cadaverine branch of the lysine degradation pathway were systematically decreased in biofilm. Exogenous supplementation of cadaverine caused significantly increased planktonic growth, decreased biofilm accumulation by 49% and led to altered biofilm morphology, converting to a pellicle biofilm at the air-liquid interface. Our findings show how metabolic pathway differences directly affect the growth mode in P. aeruginosa and could support interventional strategies to control biofilm formation.


Subject(s)
Pseudomonas Infections , Pseudomonas aeruginosa , Anti-Bacterial Agents/metabolism , Biofilms , Cadaverine , Humans , Lysine/metabolism , Metabolomics , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/metabolism
4.
Ann Jt ; 62021 Oct.
Article in English | MEDLINE | ID: mdl-34859164

ABSTRACT

Formation of microbial biofilms has long been implicated in the occurrence of periprosthetic joint infections (PJIs). Despite the widespread acknowledgment of the severity of these infections, much is still unknown regarding the underlying mechanisms of biofilm establishment and proliferation in the joint space. The presence of these resilient, complex communities poses many clinical challenges with respect to prevention, diagnosis, and treatment practices. Mature biofilms are known to be highly recalcitrant to antibiotic therapeutics as well as host immune system mediated clearance. A comprehensive understanding of biofilms in the unique joint environment at the molecular level will provide clinicians valuable insight into how best to combat them. As each stage in the process of biofilm establishment has the potential for clinical intervention, this review will provide a sequential analysis of the existing literature, following each step in the formation cycle. New insights into bacterial survival mechanisms from antimicrobial challenge and host immune defenses will be discussed. These new observations in the field may shed light on the early protection conferred upon entry into the joint space ultimately leading to the establishment of a mature biofilm. Additionally, standards of clinical diagnosis as well as current measures of prevention and treatment will be briefly discussed.

5.
Microbiol Spectr ; 9(2): e0026721, 2021 10 31.
Article in English | MEDLINE | ID: mdl-34523997

ABSTRACT

Rapid synovial fluid-induced aggregation of Staphylococcus aureus is currently being investigated as an important factor in the establishment of periprosthetic joint infections (PJIs). Pathogenic advantages of aggregate formation have been well documented in vitro, including recalcitrance to antibiotics and protection from host immune defenses. The objective of the present work was to determine the strain dependency of synovial fluid-induced aggregation by measuring the degree of aggregation of 21 clinical S. aureus isolates cultured from either PJI or bloodstream infections using imaging and flow cytometry. Furthermore, by measuring attached bacterial biomass using a conventional crystal violet assay, we assessed whether there is a correlation between the aggregative phenotype and surface-associated biofilm formation. While all of the isolates were stimulated to aggregate upon exposure to bovine synovial fluid (BSF) and human serum (HS), the extent of aggregation was highly variable between individual strains. Interestingly, the PJI isolates aggregated significantly more upon BSF exposure than those isolated from bloodstream infections. While we were able to stimulate biofilm formation with all of the isolates in growth medium, supplementation with either synovial fluid or human serum inhibited bacterial surface attachment over a 24 h incubation. Surprisingly, there was no correlation between the degree of synovial fluid-induced aggregation and quantity of surface-associated biofilm as measured by a conventional biofilm assay without host fluid supplementation. Taken together, our findings suggest that synovial fluid-induced aggregation appears to be widespread among S. aureus strains and mechanistically independent of biofilm formation. IMPORTANCE Bacterial infections of hip and knee implants are rare but devastating complications of orthopedic surgery. Despite a widespread appreciation of the considerable financial, physical, and emotional burden associated with the development of a prosthetic joint infection, the establishment of bacteria in the synovial joint remains poorly understood. It has been shown that immediately upon exposure to synovial fluid, the viscous fluid in the joint, Staphylococcus aureus rapidly forms aggregates which are resistant to antibiotics and host immune cell clearance. The bacterial virulence associated with aggregate formation is likely a step in the establishment of prosthetic joint infection, and as such, it has the potential to be a potent target of prevention. We hope that this work contributes to the future development of therapeutics targeting synovial fluid-induced aggregation to better prevent and treat these infections.


Subject(s)
Bacterial Adhesion/physiology , Biofilms/growth & development , Prosthesis-Related Infections/microbiology , Staphylococcus aureus/growth & development , Synovial Fluid/microbiology , Animals , Cattle , Hip Prosthesis/microbiology , Humans , Knee Prosthesis/microbiology , Serum/microbiology , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects , Staphylococcus aureus/isolation & purification , Synovial Membrane/microbiology
6.
Micron ; 150: 103137, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34392091

ABSTRACT

Fibronectin (Fn) and fibrinogen (Fg) are major host proteins present in the extracellular matrix, blood, and coatings on indwelling medical devices. The ability of Staphylococcus aureus to cause infections in humans depends on favorable interactions with these host ligands. Closely related bacterial adhesins, fibronectin-binding proteins A and B (FnBPA, FnBPB) were evaluated for two key steps in pathogenesis: clumping and adhesion. Experiments utilized optical spectrophotometry, flow cytometry, and atomic force microscopy to probe FnBPA/B alone or in combination in seven different strains of S. aureus and Lactococcus lactis, a Gram-positive surrogate that naturally lacks adhesins to mammalian ligands. In the absence of soluble ligands, both FnBPA and FnBPB were capable of interacting with adjacent FnBPs from neighboring bacteria to mediate clumping. In the presence of soluble host ligands, clumping was enhanced particularly under shear stress and with Fn present in the media. FnBPB exhibited greater ability to clump compared to FnBPA. The strength of adhesion was similar for immobilized Fn to FnBPA and FnBPB. These findings suggest that these two distinct but closely related bacterial adhesins, have different functional capabilities to interact with host ligands in different settings (e.g., soluble vs. immobilized). Survival and persistence of S. aureus in a human host may depend on complementary roles of FnBPA and FnBPB as they interact with different conformations of Fn or Fg (compact in solution vs. extended on a surface) present in different physiological spaces.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Adhesins, Bacterial , Animals , Bacterial Proteins , Fibrinogen , Fibronectins , Humans , Ligands
7.
J Insect Physiol ; 133: 104274, 2021.
Article in English | MEDLINE | ID: mdl-34216600

ABSTRACT

BACKGROUND: Digestive tissues are essential for diet processing and nutrient accessibility, especially in omnivores, and these functions occur despite and in collaboration with dynamic microbial communities that reside within and upon these tissues. Prolonged host development and reduced digestive tissue sizes have been observed in germ-free animals, and normal host phenotypes were recovered following the re-introduction of typical gut microbiomes via coprophagy. RESULTS: High-resolution histological analyses of Periplaneta americana cockroach digestive tissues revealed that total prevention of microbial colonization of the gut had severe impacts on the growth and development of gut tissues, especially the posterior midgut and anterior hindgut subcompartments that are expected to be colonized and inhabited by the greatest number of bacteria. Juveniles that were briefly exposed to normal gut microbiota exhibited a partial gut morphological recovery, suggesting that a single inoculation was insufficient. These data highlight gut microbiota as integral to normal growth and development of tissues they are in direct contact with and, more broadly, the organism in which they reside. CONCLUSIONS: We draw on these data, host life history traits (i.e. multigenerational cohousing, molting, and filial coprophagy and exuvia feeding), and previous studies to suggest a host developmental model in which gut tissues reflect a conflict-collaboration dynamic where 1) nutrient-absorptive anterior midgut tissues are in competition with transient and resident bacteria for easily assimilable dietary nutrients and whose growth is least-affected by the presence of gut bacteria and 2) posterior midgut, anterior hindgut, and to a lesser degree, posterior hindgut tissues are significantly impacted by gut bacterial presence because they are occupied by the greatest number of bacteria and the host is relying upon, and thus collaborating with, them to assist with complex polysaccharide catabolism processing and nutrient provisioning (i.e. short-chain fatty acids).


Subject(s)
Gastrointestinal Microbiome , Periplaneta/growth & development , Periplaneta/microbiology , Animals , Gastrointestinal Tract/growth & development , Gastrointestinal Tract/microbiology , Nymph/growth & development , Nymph/microbiology
8.
Adv Exp Med Biol ; 1323: 81-90, 2021.
Article in English | MEDLINE | ID: mdl-32797406

ABSTRACT

Septic arthritis and prosthetic joint infection (PJI) are conditions commonly associated with Gram-positive cocci, however, a drastic increase in cases derived from enterobacterial species has been observed. Recently it has been reported by multiple groups that staphylococci rapidly form free-floating aggregates in the presence of synovial fluid. These aggregates are comparatively more resistant to antimicrobial challenge than their planktonic counterparts, and thus may play a role in the pathogenesis of joint infection. While staphylococcal aggregates have been the primary focus of interest in the field, it is unclear just how widespread synovial fluid mediated aggregation (SFMA) is in Gram negative enterobacteria (GNE). Through this work we have evaluated SFMA in clinical GNE isolated from PJIs. Two PJI clinical strains each of Enterobacter cloacae, Escherichia coli, Klebsiella pneumonia and Proteus mirabilis strains representing a range of antibiotic susceptibilities were exposed to 10% bovine synovial fluid supernatant (BSF) using a relatively simple, quick semi-quantitative method using an imaging plate reader. BSF stimulated aggregation within 0.5 h both strains of E. cloacae and P. mirabilis and one strain of E.coli. In one strain of P. mirabilis and E.coli, the size of the aggregates significantly increased from 0.5 to 2 h exposure. In contrast, neither K. pneumoniae strain aggregated in BSF. These preliminary findings show that aggregation can occur quickly in GNE, but the extent appears strain and species specific. Further work is required to assess the impact of SFMA on antibiotic tolerance, host innate immunity and the establishment of biofilms.


Subject(s)
Enterobacteriaceae , Synovial Fluid , Animals , Anti-Bacterial Agents/pharmacology , Biofilms , Cattle , Klebsiella pneumoniae , Proteus mirabilis
10.
PLoS One ; 15(4): e0231791, 2020.
Article in English | MEDLINE | ID: mdl-32302361

ABSTRACT

Periprosthetic joint infections (PJIs) are a devastating complication that occurs in 2% of patients following joint replacement. These infections are costly and difficult to treat, often requiring multiple corrective surgeries and prolonged antimicrobial treatments. The Gram-positive bacterium Staphylococcus aureus is one of the most common causes of PJIs, and it is often resistant to a number of commonly used antimicrobials. This tolerance can be partially attributed to the ability of S. aureus to form biofilms. Biofilms associated with the surface of indwelling medical devices have been observed on components removed during chronic infection, however, the development and localization of biofilms during PJIs remains unclear. Prior studies have demonstrated that synovial fluid, in the joint cavity, promotes the development of bacterial aggregates with many biofilm-like properties, including antibiotic resistance. We anticipate these aggregates have an important role in biofilm formation and antibiotic tolerance during PJIs. Therefore, we sought to determine specifically how synovial fluid promotes aggregate formation and the impact of this process on surface attachment. Using flow cytometry and microscopy, we quantified the aggregation of various clinical S. aureus strains following exposure to purified synovial fluid components. We determined that fibrinogen and fibronectin promoted bacterial aggregation, while cell free DNA, serum albumin, and hyaluronic acid had minimal effect. To determine how synovial fluid mediated aggregation affects surface attachment, we utilized microscopy to measure bacterial attachment. Surprisingly, we found that synovial fluid significantly impeded bacterial surface attachment to a variety of materials. We conclude from this study that fibrinogen and fibronectin in synovial fluid have a crucial role in promoting bacterial aggregation and inhibiting surface adhesion during PJI. Collectively, we propose that synovial fluid may have conflicting protective roles for the host by preventing adhesion to surfaces, but by promoting bacterial aggregation is also contributing to the development of antibiotic tolerance.


Subject(s)
Bacterial Adhesion/physiology , Biofilms/growth & development , Staphylococcus aureus/physiology , Synovial Fluid/microbiology , Bacterial Adhesion/drug effects , Biofilms/drug effects , Fibrinogen/pharmacology , Fibronectins/pharmacology , Humans , Staphylococcus aureus/drug effects , Synovial Fluid/drug effects , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL