Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
bioRxiv ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-39149229

ABSTRACT

Interferon (IFN)-stimulated gene 15 (ISG15), a ubiquitin-like protein, is covalently conjugated to host (immune) proteins such as MDA5 and IRF3 in a process called ISGylation, thereby limiting the replication of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, whether SARS-CoV-2 proteins can be directly targeted for ISGylation remains elusive. In this study, we identified the nucleocapsid (N) protein of SARS-CoV-2 as a major substrate of ISGylation catalyzed by the host E3 ligase HERC5; however, N ISGylation is readily removed through de-ISGylation by the papain-like protease (PLpro) activity of NSP3. Mass spectrometry analysis identified that the N protein undergoes ISGylation at four lysine residues (K266, K355, K387 and K388), and mutational analysis of these sites in the context of a SARS-CoV-2 replicon (N-4KR) abolished N ISGylation and alleviated ISGylation-mediated inhibition of viral RNA synthesis. Furthermore, our results indicated that HERC5 targets preferentially phosphorylated N protein for ISGylation to regulate its oligomeric assembly. These findings reveal a novel mechanism by which the host ISGylation machinery directly targets SARS-CoV-2 proteins to restrict viral replication and illuminate how an intricate interplay of host (HERC5) and viral (PLpro) enzymes coordinates viral protein ISGylation and thereby regulates virus replication.

2.
J Virol ; 98(9): e0086924, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39194248

ABSTRACT

Interferon (IFN)-stimulated gene 15 (ISG15), a ubiquitin-like protein, is covalently conjugated to host immune proteins such as MDA5 and IRF3 in a process called ISGylation, thereby promoting type I IFN induction to limit the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, whether SARS-CoV-2 proteins can be directly targeted for ISGylation remains elusive. In this study, we identified the nucleocapsid (N) protein of SARS-CoV-2 as a major substrate of ISGylation catalyzed by the host E3 ligase HERC5; however, N ISGylation is readily removed through deISGylation by the papain-like protease (PLpro) activity of NSP3. Mass spectrometry analysis identified that the N protein undergoes ISGylation at four lysine residues (K266, K355, K387, and K388), and mutational analysis of these sites in the context of a SARS-CoV-2 replicon (N-4KR) abolished N ISGylation and alleviated ISGylation-mediated inhibition of viral RNA synthesis. Furthermore, our results indicated that HERC5 targets preferentially phosphorylated N protein for ISGylation to regulate its oligomeric assembly. These findings reveal a novel mechanism by which the host ISGylation machinery directly targets SARS-CoV-2 proteins to restrict viral replication and illuminate how an intricate interplay of host (HERC5) and viral (PLpro) enzymes coordinates viral protein ISGylation and thereby regulates virus replication.IMPORTANCEThe role of protein ISGylation in regulating host cellular processes has been studied extensively; however, how ISG15 conjugation influences the activity of viral proteins, particularly coronaviral proteins, is largely unknown. Our study uncovered that the nucleocapsid (N) protein of SARS-CoV-2 is ISGylated by the HERC5 ISGylation machinery and that this modification impedes the functional assembly of N into oligomers ultimately inhibiting viral RNA synthesis. This antiviral restriction mechanism is antagonized by the PLpro deISGylation activity of SARS-CoV-2 NSP3. This study deepens our understanding of SARS-CoV-2 protein regulation by posttranslational modifications and may open new avenues for designing antiviral strategies for COVID-19.


Subject(s)
Coronavirus Nucleocapsid Proteins , Coronavirus Papain-Like Proteases , Cytokines , RNA, Viral , SARS-CoV-2 , Ubiquitin-Protein Ligases , Ubiquitins , Virus Replication , Humans , Ubiquitins/metabolism , Ubiquitins/genetics , SARS-CoV-2/metabolism , Ubiquitin-Protein Ligases/metabolism , Coronavirus Papain-Like Proteases/metabolism , RNA, Viral/metabolism , RNA, Viral/genetics , Cytokines/metabolism , HEK293 Cells , Coronavirus Nucleocapsid Proteins/metabolism , Phosphoproteins/metabolism , COVID-19/virology , COVID-19/metabolism , Protein Multimerization , Protein Processing, Post-Translational , Intracellular Signaling Peptides and Proteins
3.
Clin Cancer Res ; 30(18): 4179-4189, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39052240

ABSTRACT

PURPOSE: There are no effective treatment options for patients with aggressive epithelioid hemangioendothelioma (EHE) driven by the TAZ-CAMTA1 (TC) fusion gene. Here, we aimed to understand the regulation of TC using pharmacologic tools and identify vulnerabilities that can potentially be exploited for the treatment of EHE. EXPERIMENTAL DESIGN: TC is a transcriptional coregulator; we hypothesized that compounds that reduce TC nuclear levels, either through translocation of TC to the cytoplasm, or through degradation, would render TC less oncogenic. TC localization was monitored using immunofluorescence in an EHE tumor cell line. Two target-selective libraries were used to identify small molecules that reduce TC localization in the nucleus. The ability of the shortlisted hits to affect cell viability, apoptosis, and tumorigenesis was also evaluated. RESULTS: Basal TC remained "immobile" in the nucleus; administration of cyclin-dependent kinase (CDK) inhibitors such as CGP60474 and dinaciclib (Dina) mobilized TC. "Mobile" TC shuttled between the nucleus and cytoplasm; however, it was eventually degraded through proteasomes. This dramatically suppressed the levels of TC-regulated transcripts and cell viability, promoted apoptosis, and reduced the area of metastatic lesions in the allograft model of EHE. We specifically identified that the inhibition of CDK9, a transcriptional CDK, destabilizes TC. CONCLUSIONS: The CDK inhibitor Dina exhibited antitumorigenic properties both in vitro and in vivo in EHE models. Dina has been rigorously tested in clinical trials and displayed an acceptable toxicity profile. Therefore, there is a potential therapeutic window for repurposing Dina for the treatment of EHE.


Subject(s)
Apoptosis , Cyclic N-Oxides , Cyclin-Dependent Kinase 9 , Hemangioendothelioma, Epithelioid , Indolizines , Pyridinium Compounds , Xenograft Model Antitumor Assays , Humans , Cyclin-Dependent Kinase 9/antagonists & inhibitors , Cyclin-Dependent Kinase 9/metabolism , Indolizines/pharmacology , Animals , Pyridinium Compounds/pharmacology , Pyridinium Compounds/administration & dosage , Mice , Hemangioendothelioma, Epithelioid/drug therapy , Hemangioendothelioma, Epithelioid/pathology , Hemangioendothelioma, Epithelioid/genetics , Cell Line, Tumor , Apoptosis/drug effects , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Cell Proliferation/drug effects , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Gene Expression Regulation, Neoplastic/drug effects , Cell Nucleus/metabolism , Cell Survival/drug effects
4.
J Med Chem ; 67(4): 2631-2666, 2024 02 22.
Article in English | MEDLINE | ID: mdl-38330278

ABSTRACT

Citron kinase (CITK) is an AGC-family serine/threonine kinase that regulates cytokinesis. Despite knockdown experiments implicating CITK as an anticancer target, no selective CITK inhibitors exist. We transformed a previously reported kinase inhibitor with weak off-target CITK activity into a first-in-class CITK chemical probe, C3TD879. C3TD879 is a Type I kinase inhibitor which potently inhibits CITK catalytic activity (biochemical IC50 = 12 nM), binds directly to full-length human CITK in cells (NanoBRET Kd < 10 nM), and demonstrates favorable DMPK properties for in vivo evaluation. We engineered exquisite selectivity for CITK (>17-fold versus 373 other human kinases), making C3TD879 the first chemical probe suitable for interrogating the complex biology of CITK. Our small-molecule CITK inhibitors could not phenocopy the effects of CITK knockdown in cell proliferation, cell cycle progression, or cytokinesis assays, providing preliminary evidence that the structural roles of CITK may be more important than its kinase activity.


Subject(s)
Cytokinesis , Protein Serine-Threonine Kinases , Humans , Protein Serine-Threonine Kinases/metabolism , Cell Division , Cytokinesis/physiology , Phosphorylation , Cell Proliferation
5.
Cancer Res ; 83(24): 4142-4160, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37801613

ABSTRACT

Prostate cancer remains the second leading cause of cancer death in men in Western cultures. A deeper understanding of the mechanisms by which prostate cancer cells divide to support tumor growth could help devise strategies to overcome treatment resistance and improve survival. Here, we identified that the mitotic AGC family protein kinase citron kinase (CIT) is a pivotal regulator of prostate cancer growth that mediates prostate cancer cell interphase progression. Increased CIT expression correlated with prostate cancer growth induction and aggressive prostate cancer progression, and CIT was overexpressed in prostate cancer compared with benign prostate tissue. CIT overexpression was controlled by an E2F2-Skp2-p27 signaling axis and conferred resistance to androgen-targeted treatment strategies. The effects of CIT relied entirely on its kinase activity. Conversely, CIT silencing inhibited the growth of cell lines and xenografts representing different stages of prostate cancer progression and treatment resistance but did not affect benign epithelial prostate cells or nonprostatic normal cells, indicating a potential therapeutic window for CIT inhibition. CIT kinase activity was identified as druggable and was potently inhibited by the multikinase inhibitor OTS-167, which decreased the proliferation of treatment-resistant prostate cancer cells and patient-derived organoids. Isolation of the in vivo CIT substrates identified proteins involved in diverse cellular functions ranging from proliferation to alternative splicing events that are enriched in treatment-resistant prostate cancer. These findings provide insights into the regulation of aggressive prostate cancer cell behavior by CIT and identify CIT as a functionally diverse and druggable driver of prostate cancer progression. SIGNIFICANCE: The poorly characterized protein kinase citron kinase is a therapeutic target in prostate cancer that drives tumor growth by regulating diverse substrates, which control several hallmarks of aggressive prostate cancer progression. See related commentary by Mishra et al., p. 4008.


Subject(s)
Prostate , Prostatic Neoplasms , Protein Kinases , Humans , Male , Cell Line, Tumor , Cell Proliferation , Prostate/pathology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Protein Kinases/metabolism , Signal Transduction
6.
PLoS Biol ; 21(9): e3002295, 2023 09.
Article in English | MEDLINE | ID: mdl-37713380

ABSTRACT

Cancer stem cells drive tumor growth and survival via self-renewal and therapeutic resistance, but the upstream mechanisms are not well defined. In this issue of PLOS Biology, a study in colon cancer reveals a new signalling network that links epigenetic regulation to these phenotypes.


Subject(s)
Colonic Neoplasms , Drug Resistance, Neoplasm , Humans , Drug Resistance, Neoplasm/genetics , Epigenesis, Genetic , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Neoplastic Stem Cells , Phenotype , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Neoplasm Proteins , Intracellular Signaling Peptides and Proteins
7.
Cell Host Microbe ; 31(8): 1317-1330.e10, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37478852

ABSTRACT

Direct targeting of essential viral enzymes such as proteases, polymerases, and helicases has long been the major focus of antiviral drug design. Although successful for some viral enzymes, targeting viral helicases is notoriously difficult to achieve, demanding alternative strategies. Here, we show that the NS3 helicase of Zika virus (ZIKV) undergoes acetylation in its RNA-binding tunnel. Regulation of the acetylated state of K389 in ZIKV NS3 modulates RNA binding and unwinding and is required for efficient viral replication. NS3 acetylation is mediated by a specific isoform of the host acetyltransferase KAT5 (KAT5γ), which translocates from the nucleus to viral replication complexes upon infection. NS3 acetylation by KAT5γ and its proviral role are also conserved in West Nile virus (WNV), dengue virus (DENV), and yellow fever virus (YFV). Our study provides molecular insight into how a cellular acetyltransferase regulates viral helicase functions, unveiling a previously unknown target for antiviral drug development.


Subject(s)
Flavivirus , Zika Virus Infection , Zika Virus , Humans , Flavivirus/genetics , Zika Virus/genetics , Acetylation , RNA Helicases/genetics , Virus Replication/physiology , DNA Helicases , Antiviral Agents/pharmacology , RNA , Viral Nonstructural Proteins/metabolism
8.
Article in English | MEDLINE | ID: mdl-37448695

ABSTRACT

α1-Adrenergic Receptors (ARs) regulate the sympathetic nervous system by the binding of norepinephrine (NE) and epinephrine (Epi) through different subtypes (α1A, α1B, α1D). α1A-AR activation is hypothesized to be memory forming and cognitive enhancing but drug development has been stagnant due to unwanted side effects on blood pressure. We recently reported the pharmacological characterization of the first positive allosteric modulator (PAM) for the α1A-AR with predictive pro-cognitive and memory properties. In this report, we now demonstrate the in vivo characteristics of Compound 3 (Cmpd-3) in two genetically-different Alzheimer's Disease (AD) mouse models. Drug metabolism and pharmacokinetic studies indicate sufficient brain penetrance and rapid uptake into the brain with low to moderate clearance, and a favorable inhibition profile against the major cytochrome p450 enzymes. Oral administration of Cmpd-3 (3-9 mg/kg QD) can fully rescue long-term potentiation defects and AD biomarker profile (amyloid ß-40, 42) within 3 months of dosing to levels that were non-significant from WT controls and which outperformed donepezil (1 mg/kg QD). There were also significant effects on paired pulse facilitation and cognitive behavior. Long-term and high-dose in vivo studies with Cmpd-3 revealed no effects on blood pressure. Our results suggest that Cmpd-3 can maintain lasting therapeutic levels and efficacy with disease modifying effects with a once per day dosing regimen in AD mouse models with no observed side effects.

9.
Genes Dev ; 37(3-4): 86-102, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36732025

ABSTRACT

Glioblastomas (GBMs) are heterogeneous, treatment-resistant tumors driven by populations of cancer stem cells (CSCs). However, few molecular mechanisms critical for CSC population maintenance have been exploited for therapeutic development. We developed a spatially resolved loss-of-function screen in GBM patient-derived organoids to identify essential epigenetic regulators in the SOX2-enriched, therapy-resistant niche and identified WDR5 as indispensable for this population. WDR5 is a component of the WRAD complex, which promotes SET1 family-mediated Lys4 methylation of histone H3 (H3K4me), associated with positive regulation of transcription. In GBM CSCs, WDR5 inhibitors blocked WRAD complex assembly and reduced H3K4 trimethylation and expression of genes involved in CSC-relevant oncogenic pathways. H3K4me3 peaks lost with WDR5 inhibitor treatment occurred disproportionally on POU transcription factor motifs, including the POU5F1(OCT4)::SOX2 motif. Use of a SOX2/OCT4 reporter demonstrated that WDR5 inhibitor treatment diminished cells with high reporter activity. Furthermore, WDR5 inhibitor treatment and WDR5 knockdown altered the stem cell state, disrupting CSC in vitro growth and self-renewal, as well as in vivo tumor growth. These findings highlight the role of WDR5 and the WRAD complex in maintaining the CSC state and provide a rationale for therapeutic development of WDR5 inhibitors for GBM and other advanced cancers.


Subject(s)
Glioblastoma , Humans , Glioblastoma/drug therapy , Glioblastoma/genetics , Histone-Lysine N-Methyltransferase/metabolism , Transcription Factors , Neoplastic Stem Cells/pathology , Intracellular Signaling Peptides and Proteins/genetics
10.
Article in English | MEDLINE | ID: mdl-36544813

ABSTRACT

α1-Adrenergic Receptors (ARs) are G-protein Coupled Receptors (GPCRs) that regulate the sympathetic nervous system via the binding and activation of norepinephrine (NE) and epinephrine (Epi). α1-ARs control various aspects of neurotransmission, cognition, cardiovascular functions as well as other organ systems. However, therapeutic drug development for these receptors, particularly agonists, has been stagnant due to unwanted effects on blood pressure regulation. We report the synthesis and characterization of the first positive allosteric modulator (PAM) for the α1-AR based upon the derivation of the α1A-AR selective imidazoline agonist, cirazoline. Compound 3 (Cmpd-3) binds the α1A-AR with high and low affinity sites (0.13pM; 54 â€‹nM) typical of GPCR agonists, and reverts to a single low affinity site of 100 â€‹nM upon the addition of GTP. Comparison of Cmpd-3 versus other orthosteric α1A-AR-selective imidazoline ligands reveal unique properties that are consistent with a type I PAM. Cmpd-3 is both conformationally and ligand-selective for the α1A-AR subtype. In competition binding studies, Cmpd-3 potentiates NE-binding at the α1A-AR only on the high affinity state of NE with no effect on the Epi-bound α1A-AR. Moreover, Cmpd-3 demonstrates signaling-bias and potentiates the NE-mediated cAMP response of the α1A-AR at nM concentrations with no effects on the NE-mediated inositol phosphate response. There are no effects of Cmpd-3 on the signaling at the α1B- or α1D-AR subtypes. Cmpd-3 displays characteristics of a pure PAM with no intrinsic agonist properties. Specific derivation of Cmpd-3 at the R1 ortho-position recapitulated PAM characteristics. Our results characterize the first PAM for the α1-AR and holds promise for a first-in-class therapeutic to treat various diseases without the side effect of increasing blood pressure intrinsic to classical orthosteric agonists.

11.
Oncogene ; 41(10): 1518-1525, 2022 03.
Article in English | MEDLINE | ID: mdl-35031771

ABSTRACT

Metastatic outgrowth is supported by metabolic adaptations that may differ from the primary tumor of origin. However, it is unknown if such adaptations are therapeutically actionable. Here we report a novel aminopyridine compound that targets a unique Phosphogluconate Dehydrogenase (PGD)-dependent metabolic adaptation in distant metastases from pancreatic cancer patients. Compared to structurally similar analogs, 6-aminopicolamine (6AP) potently and selectively reversed PGD-dependent metastatic properties, including intrinsic tumorigenic capacity, excess glucose consumption, and global histone hyperacetylation. 6AP acted as a water-soluble prodrug that was converted into intracellular bioactive metabolites that inhibited PGD in vitro, and 6AP monotherapy demonstrated anti-metastatic efficacy with minimal toxicity in vivo. Collectively, these studies identify 6AP and possibly other 6-aminopyridines as well-tolerated prodrugs with selectivity for metastatic pancreatic cancers. If unique metabolic adaptations are a common feature of metastatic or otherwise aggressive human malignancies, then such dependencies could provide a largely untapped pool of druggable targets for patients with advanced cancers.


Subject(s)
Pancreatic Neoplasms , Prodrugs , Aminopyridines , Carcinogenesis , Histones , Humans , Pancreatic Neoplasms/pathology , Phosphogluconate Dehydrogenase , Prodrugs/pharmacology , Prodrugs/therapeutic use
12.
J Med Chem ; 65(4): 2880-2904, 2022 02 24.
Article in English | MEDLINE | ID: mdl-34347470

ABSTRACT

Starting from the MLPCN probe compound ML300, a structure-based optimization campaign was initiated against the recent severe acute respiratory syndrome coronavirus (SARS-CoV-2) main protease (3CLpro). X-ray structures of SARS-CoV-1 and SARS-CoV-2 3CLpro enzymes in complex with multiple ML300-based inhibitors, including the original probe ML300, were obtained and proved instrumental in guiding chemistry toward probe compound 41 (CCF0058981). The disclosed inhibitors utilize a noncovalent mode of action and complex in a noncanonical binding mode not observed by peptidic 3CLpro inhibitors. In vitro DMPK profiling highlights key areas where further optimization in the series is required to obtain useful in vivo probes. Antiviral activity was established using a SARS-CoV-2-infected Vero E6 cell viability assay and a plaque formation assay. Compound 41 demonstrates nanomolar activity in these respective assays, comparable in potency to remdesivir. These findings have implications for antiviral development to combat current and future SARS-like zoonotic coronavirus outbreaks.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Cysteine Proteinase Inhibitors/pharmacology , Peptidomimetics/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , COVID-19/metabolism , Chlorocebus aethiops , Coronavirus 3C Proteases/isolation & purification , Coronavirus 3C Proteases/metabolism , Crystallography, X-Ray , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/chemistry , Dose-Response Relationship, Drug , Glutamine/chemistry , Glutamine/pharmacology , Humans , Ketones/chemistry , Ketones/pharmacology , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Peptidomimetics/chemistry , SARS-CoV-2/enzymology , Vero Cells , Virus Replication/drug effects , COVID-19 Drug Treatment
13.
J Med Chem ; 63(8): 4315-4333, 2020 04 23.
Article in English | MEDLINE | ID: mdl-32223236

ABSTRACT

The frequent deregulation of MYC and its elevated expression via multiple mechanisms drives cells to a tumorigenic state. Indeed, MYC is overexpressed in up to ∼50% of human cancers and is considered a highly validated anticancer target. Recently, we discovered that WD repeat-containing protein 5 (WDR5) binds to MYC and is a critical cofactor required for the recruitment of MYC to its target genes and reported the first small molecule inhibitors of the WDR5-MYC interaction using structure-based design. These compounds display high binding affinity, but have poor physicochemical properties and are hence not suitable for in vivo studies. Herein, we conducted an NMR-based fragment screening to identify additional chemical matter and, using a structure-based approach, we merged a fragment hit with the previously reported sulfonamide series. Compounds in this series can disrupt the WDR5-MYC interaction in cells, and as a consequence, we observed a reduction of MYC localization to chromatin.


Subject(s)
Drug Design , Drug Discovery/methods , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Sulfonamides/chemical synthesis , Sulfonamides/pharmacology , Cell Line, Tumor , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Protein Structure, Tertiary , Proto-Oncogene Proteins c-myc/metabolism , Structure-Activity Relationship
14.
J Med Chem ; 63(2): 656-675, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31858797

ABSTRACT

WD repeat domain 5 (WDR5) is a member of the WD40-repeat protein family that plays a critical role in multiple chromatin-centric processes. Overexpression of WDR5 correlates with a poor clinical outcome in many human cancers, and WDR5 itself has emerged as an attractive target for therapy. Most drug-discovery efforts center on the WIN site of WDR5 that is responsible for the recruitment of WDR5 to chromatin. Here, we describe discovery of a novel WDR5 WIN site antagonists containing a dihydroisoquinolinone bicyclic core using a structure-based design. These compounds exhibit picomolar binding affinity and selective concentration-dependent antiproliferative activities in sensitive MLL-fusion cell lines. Furthermore, these WDR5 WIN site binders inhibit proliferation in MYC-driven cancer cells and reduce MYC recruitment to chromatin at MYC/WDR5 co-bound genes. Thus, these molecules are useful probes to study the implication of WDR5 inhibition in cancers and serve as a potential starting point toward the discovery of anti-WDR5 therapeutics.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/chemical synthesis , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Quinolones/chemical synthesis , Quinolones/pharmacology , WD40 Repeats/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation , Chromatin/drug effects , Chromatin/genetics , Crystallography, X-Ray , Drug Design , Drug Discovery , Epigenetic Repression/drug effects , Genes, myc/drug effects , Humans , Structure-Activity Relationship
15.
J Med Chem ; 62(24): 11232-11259, 2019 12 26.
Article in English | MEDLINE | ID: mdl-31724864

ABSTRACT

The treatment of tumors driven by overexpression or amplification of MYC oncogenes remains a significant challenge in drug discovery. Here, we present a new strategy toward the inhibition of MYC via the disruption of the protein-protein interaction between MYC and its chromatin cofactor WD Repeat-Containing Protein 5. Blocking the association of these proteins is hypothesized to disrupt the localization of MYC to chromatin, thus disrupting the ability of MYC to sustain tumorigenesis. Utilizing a high-throughput screening campaign and subsequent structure-guided design, we identify small-molecule inhibitors of this interaction with potent in vitro binding affinity and report structurally related negative controls that can be used to study the effect of this disruption. Our work suggests that disruption of this protein-protein interaction may provide a path toward an effective approach for the treatment of multiple tumors and anticipate that the molecules disclosed can be used as starting points for future efforts toward compounds with improved drug-like properties.


Subject(s)
Drug Discovery , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Protein Interaction Domains and Motifs/drug effects , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Salicylic Acid/chemistry , Small Molecule Libraries/pharmacology , Sulfonamides/pharmacology , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/metabolism , HEK293 Cells , High-Throughput Screening Assays , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Protein Binding , Protein Conformation , Proto-Oncogene Proteins c-myc/metabolism , WD40 Repeats
16.
ACS Chem Neurosci ; 10(8): 3427-3436, 2019 08 21.
Article in English | MEDLINE | ID: mdl-31132237

ABSTRACT

As part of the G-protein coupled receptor (GPCR) family, metabotropic glutamate (mGlu) receptors play an important role as drug targets of cognitive diseases. Selective allosteric modulators of mGlu subtype 5 (mGlu5) have the potential to alleviate symptoms of numerous central nervous system disorders such as schizophrenia in a more targeted fashion. Multiple mGlu5 positive allosteric modulators (PAMs), such as 1-(3-fluorophenyl)-N-((3-fluorophenyl)-methylideneamino)-methanimine (DFB), 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)-benzamide (CDPPB), and 4-nitro-N-(1,3-diphenyl-1H-pyrazol-5-yl)-benzamide (VU-29), exert their actions by binding to a defined allosteric site on mGlu5 located in the seven-transmembrane domain (7TM) and shared by mGlu5 negative allosteric modulator (NAM) 2-methyl-6-(phenylethynyl)-pyridine (MPEP). Actions of the PAM N-{4-chloro-2-[(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)methyl]phenyl}-2-hydroxybenzamide (CPPHA) are mediated by a distinct allosteric site in the 7TM domain different from the MPEP binding site. Experimental evidence confirms these findings through mutagenesis experiments involving residues F585 (TM1) and A809 (TM7). In an effort to investigate mGlu5 PAM selectivity for this alternative allosteric site distinct from MPEP binding, we employed in silico quantitative structure-activity relationship (QSAR) modeling. Subsequent ligand-based virtual screening prioritized a set of 63 candidate compounds predicted from a library of over 4 million commercially available compounds to bind exclusively to this novel site. Experimental validation verified the biological activity for seven of 63 selected candidates. Further, medicinal chemistry optimizations based on these molecules revealed compound VU6003586 with an experimentally validated potency of 174 nM. Radioligand binding experiments showed only partial inhibition at very high concentrations, most likely indicative of binding at a non-MPEP site. Selective positive allosteric modulators for mGlu5 have the potential for tremendous impact concerning devastating neurological disorders such as schizophrenia and Huntington's disease. These identified and validated novel selective compounds can serve as starting points for more specifically tailored lead and probe molecules and thus help the development of potential therapeutic agents with reduced adverse effects.


Subject(s)
Drug Discovery/methods , Receptor, Metabotropic Glutamate 5/drug effects , Allosteric Regulation/drug effects , Allosteric Site/drug effects , Animals , High-Throughput Screening Assays , Humans , Receptor, Metabotropic Glutamate 5/chemistry , Receptor, Metabotropic Glutamate 5/metabolism , Structure-Activity Relationship
17.
Cell Rep ; 26(11): 2916-2928.e13, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30865883

ABSTRACT

The chromatin-associated protein WDR5 is a promising target for pharmacological inhibition in cancer. Drug discovery efforts center on the blockade of the "WIN site" of WDR5, a well-defined pocket that is amenable to small molecule inhibition. Various cancer contexts have been proposed to be targets for WIN site inhibitors, but a lack of understanding of WDR5 target genes and of the primary effects of WIN site inhibitors hampers their utility. Here, by the discovery of potent WIN site inhibitors, we demonstrate that the WIN site links WDR5 to chromatin at a small cohort of loci, including a specific subset of ribosome protein genes. WIN site inhibitors rapidly displace WDR5 from chromatin and decrease the expression of associated genes, causing translational inhibition, nucleolar stress, and p53 induction. Our studies define a mode by which WDR5 engages chromatin and forecast that WIN site blockade could have utility against multiple cancer types.


Subject(s)
Chromatin/metabolism , Enzyme Inhibitors/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Binding Sites , Cell Line, Tumor , Enzyme Inhibitors/chemical synthesis , Female , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/chemistry , Male , Protein Binding/drug effects
18.
ACS Pharmacol Transl Sci ; 2(6): 442-452, 2019 Dec 13.
Article in English | MEDLINE | ID: mdl-32259076

ABSTRACT

Allosteric modulation of GPCRs represents an increasingly explored approach in drug development. Due to complex pharmacology, however, the relationship(s) between modulator properties determined in vitro with in vivo concentration-effect phenomena is frequently unclear. We investigated key pharmacological properties of a set of metabotropic glutamate receptor 5 (mGlu5) positive allosteric modulators (PAMs) and their relevance to in vivo concentration-response relationships. These studies identified a significant relationship between in vitro PAM cooperativity (αß), as well as the maximal response obtained from a simple in vitro PAM concentration-response experiment, with in vivo efficacy for reversal of amphetamine-induced hyperlocomotion. This correlation did not exist with PAM potency or affinity. Data across PAMs were then converged to calculate an in vivo concentration of glutamate putatively relevant to the mGlu5 PAM mechanism of action. This work demonstrates the ability to merge in vitro pharmacology profiles with relevant behavioral outcomes and also provides a novel method to estimate neurotransmitter concentrations in vivo.

19.
J Med Chem ; 61(13): 5623-5642, 2018 07 12.
Article in English | MEDLINE | ID: mdl-29889518

ABSTRACT

WDR5 is a chromatin-regulatory scaffold protein overexpressed in various cancers and a potential epigenetic drug target for the treatment of mixed-lineage leukemia. Here, we describe the discovery of potent and selective WDR5-WIN-site inhibitors using fragment-based methods and structure-based design. NMR-based screening of a large fragment library identified several chemically distinct hit series that bind to the WIN site within WDR5. Members of a 6,7-dihydro-5 H-pyrrolo[1,2- a]imidazole fragment class were expanded using a structure-based design approach to arrive at lead compounds with dissociation constants <10 nM and micromolar cellular activity against an AML-leukemia cell line. These compounds represent starting points for the discovery of clinically useful WDR5 inhibitors for the treatment of cancer.


Subject(s)
Drug Design , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/chemistry , Imidazoles/chemistry , Imidazoles/pharmacology , Amino Acid Motifs , Amino Acid Sequence , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , Histone-Lysine N-Methyltransferase/metabolism , Humans , Intracellular Signaling Peptides and Proteins , Structure-Activity Relationship
20.
Bioorg Med Chem Lett ; 28(12): 2175-2179, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29754948

ABSTRACT

This letter describes the chemical optimization of a new series of M1 positive allosteric modulators (PAMs) based on a novel benzomorpholine core, developed via iterative parallel synthesis, and culminating in the highly utilized rodent in vivo tool compound, VU0486846 (7), devoid of adverse effect liability. This is the first report of the optimization campaign (SAR and DMPK profiling) that led to the discovery of VU0486846 and details all of the challenges faced in allosteric modulator programs (both steep and flat SAR, as well as subtle structural changes affecting CNS penetration and overall physiochemical and DMPK properties).


Subject(s)
Drug Discovery , Morpholines/pharmacology , Pyrazoles/pharmacology , Receptor, Muscarinic M1/agonists , Animals , CHO Cells , Cricetulus , Humans , Molecular Structure , Morpholines/chemical synthesis , Morpholines/chemistry , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL