Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters








Database
Publication year range
2.
Nat Commun ; 11(1): 5978, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33293507

ABSTRACT

Many global environmental agendas, including halting biodiversity loss, reversing land degradation, and limiting climate change, depend upon retaining forests with high ecological integrity, yet the scale and degree of forest modification remain poorly quantified and mapped. By integrating data on observed and inferred human pressures and an index of lost connectivity, we generate a globally consistent, continuous index of forest condition as determined by the degree of anthropogenic modification. Globally, only 17.4 million km2 of forest (40.5%) has high landscape-level integrity (mostly found in Canada, Russia, the Amazon, Central Africa, and New Guinea) and only 27% of this area is found in nationally designated protected areas. Of the forest inside protected areas, only 56% has high landscape-level integrity. Ambitious policies that prioritize the retention of forest integrity, especially in the most intact areas, are now urgently needed alongside current efforts aimed at halting deforestation and restoring the integrity of forests globally.


Subject(s)
Biodiversity , Conservation of Natural Resources/statistics & numerical data , Environmental Policy , Forests , Africa, Central , Canada , Climate Change , Conservation of Natural Resources/legislation & jurisprudence , New Guinea , Russia
3.
Philos Trans R Soc Lond B Biol Sci ; 375(1794): 20190128, 2020 03 16.
Article in English | MEDLINE | ID: mdl-31983334

ABSTRACT

Integrated high-resolution maps of carbon stocks and biodiversity that identify areas of potential co-benefits for climate change mitigation and biodiversity conservation can help facilitate the implementation of global climate and biodiversity commitments at local levels. However, the multi-dimensional nature of biodiversity presents a major challenge for understanding, mapping and communicating where and how biodiversity benefits coincide with climate benefits. A new integrated approach to biodiversity is therefore needed. Here, we (a) present a new high-resolution map of global above- and below-ground carbon stored in biomass and soil, (b) quantify biodiversity values using two complementary indices (BIp and BIr) representing proactive and reactive approaches to conservation, and (c) examine patterns of carbon-biodiversity overlap by identifying 'hotspots' (20% highest values for both aspects). Our indices integrate local diversity and ecosystem intactness, as well as regional ecosystem intactness across the broader area supporting a similar natural assemblage of species to the location of interest. The western Amazon Basin, Central Africa and Southeast Asia capture the last strongholds of highest local biodiversity and ecosystem intactness worldwide, while the last refuges for unique biological communities whose habitats have been greatly reduced are mostly found in the tropical Andes and central Sundaland. There is 38 and 5% overlap in carbon and biodiversity hotspots, for proactive and reactive conservation, respectively. Alarmingly, only around 12 and 21% of these proactive and reactive hotspot areas, respectively, are formally protected. This highlights that a coupled approach is urgently needed to help achieve both climate and biodiversity global targets. This would involve (1) restoring and conserving unprotected, degraded ecosystems, particularly in the Neotropics and Indomalaya, and (2) retaining the remaining strongholds of intactness. This article is part of the theme issue 'Climate change and ecosystems: threats, opportunities and solutions'.


Subject(s)
Biodiversity , Carbon Sequestration , Climate Change , Conservation of Natural Resources/methods , Ecosystem
4.
World Dev ; 121: 163-177, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31481824

ABSTRACT

Over the last few decades rapid advances in processes to collect, monitor, disclose, and disseminate information have contributed towards the development of entirely new modes of sustainability governance for global commodity supply chains. However, there has been very little critical appraisal of the contribution made by different transparency initiatives to sustainability and the ways in which they can (and cannot) influence new governance arrangements. Here we seek to strengthen the theoretical underpinning of research and action on supply chain transparency by addressing four questions: (1) What is meant by supply chain transparency? (2) What is the relevance of supply chain transparency to supply chain sustainability governance? (3) What is the current status of supply chain transparency, and what are the strengths and weaknesses of existing initiatives? and (4) What propositions can be advanced for how transparency can have a positive transformative effect on the governance interventions that seek to strengthen sustainability outcomes? We use examples from agricultural supply chains and the zero-deforestation agenda as a focus of our analysis but draw insights that are relevant to the transparency and sustainability of supply chains in general. We propose a typology to distinguish among types of supply chain information that are needed to support improvements in sustainability governance, and illustrate a number of major shortfalls and systematic biases in existing information systems. We also propose a set of ten propositions that, taken together, serve to expose some of the potential pitfalls and undesirable outcomes that may result from (inevitably) limited or poorly designed transparency systems, whilst offering guidance on some of the ways in which greater transparency can make a more effective, lasting and positive contribution to sustainability.

5.
Animal ; 8(8): 1255-63, 2014 Aug.
Article in English | MEDLINE | ID: mdl-26263189

ABSTRACT

Intensification of Brazilian cattle ranching systems has attracted both national and international attention due to its direct relation with Amazon deforestation on the one hand and increasing demand of the global population for meat on the other. Since Brazilian cattle ranching is predominantly pasture-based, we particularly focus on pasture management. We summarize the most recurrent opportunities and risks associated with pasture intensification that are brought up within scientific and political dialogues, and discuss them within the Brazilian context. We argue that sustainable intensification of pasturelands in Brazil is a viable way to increase agricultural output while simultaneously sparing land for nature. Since environmental degradation is often associated with low-yield extensive systems in Brazil, it is possible to obtain higher yields, while reversing degradation, by adopting practices like rotational grazing, incorporation of legumes and integrated crop-livestock-forestry systems. Technical assistance is however essential, particularly for small- and medium-scale farmers. Sound complementary policies and good governance must accompany these measures so that a 'rebound effect' does not lead to increased deforestation and other adverse social and environmental impacts. It is also important that animal welfare is not compromised. Although the discussion is presented with respect to Brazil, some aspects are relevant to other developing countries.


Subject(s)
Animal Husbandry/economics , Animal Husbandry/methods , Cattle/physiology , Environment , Animal Nutritional Physiological Phenomena , Animals , Brazil , Conservation of Natural Resources/methods , Risk , Socioeconomic Factors
SELECTION OF CITATIONS
SEARCH DETAIL