Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Wirel Pers Commun ; 126(3): 2175-2189, 2022.
Article in English | MEDLINE | ID: mdl-34456513

ABSTRACT

In this research, pure deterministic system has been established by a new Distributed Energy Efficient Clustering Protocol with Enhanced Threshold (DEECET) by clustering sensor nodes to originate the wireless sensor network. The DEECET is very dynamic, highly distributive, self-confessed and much energy efficient as compared to most of the other existing protocols. The MATLAB simulation provides aim proved result by means of energy dissipation being emulated in the networks lifespan for homogeneous as well as heterogeneous sensor network, which when contrasted for other traditional protocols. An enhanced result has been obtained for equitable energy dissipation for systematized networks using DEECET.

2.
Bioresour Technol ; 233: 34-43, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28258994

ABSTRACT

Generation of bioenergy from microalgal biomass has been a focus of interest in recent years. The recalcitrant nature of microalgal biomass owing to its high cellulose content limits methane generation. Thus, the present study investigates the effect of bacterial-based biological pretreatment on liquefaction of the microalga Chlorella vulgaris prior to anaerobic biodegradation to gain insights into energy efficient biomethanation. Liquefaction of microalgae resulted in a higher biomass stress index of about 18% in the experimental (pretreated with cellulose-secreting bacteria) vs. 11.8% in the control (non-pretreated) group. Mathematical modelling of the biomethanation studies implied that bacterial pretreatment had a greater influence on sustainable methane recovery, with a methane yield of about 0.08 (g Chemical Oxygen Demand/g Chemical Oxygen Demand), than did control pretreatment, with a yield of 0.04 (g Chemical Oxygen Demand/g Chemical Oxygen Demand). Energetic analysis of the proposed method of pretreatment showed a positive energy ratio of 1.04.


Subject(s)
Biofuels , Microalgae/metabolism , Anaerobiosis , Biomass , Chlorella vulgaris/metabolism , Methane/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL