Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 422
Filter
1.
BMC Med Imaging ; 24(1): 163, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38956583

ABSTRACT

PURPOSE: To examine whether there is a significant difference in image quality between the deep learning reconstruction (DLR [AiCE, Advanced Intelligent Clear-IQ Engine]) and hybrid iterative reconstruction (HIR [AIDR 3D, adaptive iterative dose reduction three dimensional]) algorithms on the conventional enhanced and CE-boost (contrast-enhancement-boost) images of indirect computed tomography venography (CTV) of lower extremities. MATERIALS AND METHODS: In this retrospective study, seventy patients who underwent CTV from June 2021 to October 2022 to assess deep vein thrombosis and varicose veins were included. Unenhanced and enhanced images were reconstructed for AIDR 3D and AiCE, AIDR 3D-boost and AiCE-boost images were obtained using subtraction software. Objective and subjective image qualities were assessed, and radiation doses were recorded. RESULTS: The CT values of the inferior vena cava (IVC), femoral vein ( FV), and popliteal vein (PV) in the CE-boost images were approximately 1.3 (1.31-1.36) times higher than in those of the enhanced images. There were no significant differences in mean CT values of IVC, FV, and PV between AIDR 3D and AiCE, AIDR 3D-boost and AiCE-boost images. Noise in AiCE, AiCE-boost images was significantly lower than in AIDR 3D and AIDR 3D-boost images ( P < 0.05). The SNR (signal-to-noise ratio), CNR (contrast-to-noise ratio), and subjective scores of AiCE-boost images were the highest among 4 groups, surpassing AiCE, AIDR 3D, and AIDR 3D-boost images (all P < 0.05). CONCLUSION: In indirect CTV of the lower extremities images, DLR with the CE-boost technique could decrease the image noise and improve the CT values, SNR, CNR, and subjective image scores. AiCE-boost images received the highest subjective image quality score and were more readily accepted by radiologists.


Subject(s)
Contrast Media , Deep Learning , Lower Extremity , Phlebography , Humans , Male , Retrospective Studies , Female , Middle Aged , Lower Extremity/blood supply , Lower Extremity/diagnostic imaging , Aged , Phlebography/methods , Adult , Algorithms , Venous Thrombosis/diagnostic imaging , Tomography, X-Ray Computed/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Popliteal Vein/diagnostic imaging , Varicose Veins/diagnostic imaging , Vena Cava, Inferior/diagnostic imaging , Femoral Vein/diagnostic imaging , Radiation Dosage , Computed Tomography Angiography/methods , Aged, 80 and over , Radiographic Image Enhancement/methods
2.
Radiat Oncol ; 19(1): 87, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956690

ABSTRACT

BACKGROUND AND PURPOSE: Various deep learning auto-segmentation (DLAS) models have been proposed, some of which have been commercialized. However, the issue of performance degradation is notable when pretrained models are deployed in the clinic. This study aims to enhance precision of a popular commercial DLAS product in rectal cancer radiotherapy by localized fine-tuning, addressing challenges in practicality and generalizability in real-world clinical settings. MATERIALS AND METHODS: A total of 120 Stage II/III mid-low rectal cancer patients were retrospectively enrolled and divided into three datasets: training (n = 60), external validation (ExVal, n = 30), and generalizability evaluation (GenEva, n = 30) datasets respectively. The patients in the training and ExVal dataset were acquired on the same CT simulator, while those in GenEva were on a different CT simulator. The commercial DLAS software was first localized fine-tuned (LFT) for clinical target volume (CTV) and organs-at-risk (OAR) using the training data, and then validated on ExVal and GenEva respectively. Performance evaluation involved comparing the LFT model with the vendor-provided pretrained model (VPM) against ground truth contours, using metrics like Dice similarity coefficient (DSC), 95th Hausdorff distance (95HD), sensitivity and specificity. RESULTS: LFT significantly improved CTV delineation accuracy (p < 0.05) with LFT outperforming VPM in target volume, DSC, 95HD and specificity. Both models exhibited adequate accuracy for bladder and femoral heads, and LFT demonstrated significant enhancement in segmenting the more complex small intestine. We did not identify performance degradation when LFT and VPM models were applied in the GenEva dataset. CONCLUSIONS: The necessity and potential benefits of LFT DLAS towards institution-specific model adaption is underscored. The commercial DLAS software exhibits superior accuracy once localized fine-tuned, and is highly robust to imaging equipment changes.


Subject(s)
Deep Learning , Organs at Risk , Radiotherapy Planning, Computer-Assisted , Rectal Neoplasms , Humans , Rectal Neoplasms/radiotherapy , Rectal Neoplasms/pathology , Organs at Risk/radiation effects , Retrospective Studies , Radiotherapy Planning, Computer-Assisted/methods , Female , Male , Middle Aged , Aged , Radiotherapy Dosage , Tomography, X-Ray Computed , Adult , Radiotherapy, Intensity-Modulated/methods
3.
Cancer Med ; 13(13): e7436, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38949177

ABSTRACT

BACKGROUND: The current guidelines for managing screen-detected pulmonary nodules offer rule-based recommendations for immediate diagnostic work-up or follow-up at intervals of 3, 6, or 12 months. Customized visit plans are lacking. PURPOSE: To develop individualized screening schedules using reinforcement learning (RL) and evaluate the effectiveness of RL-based policy models. METHODS: Using a nested case-control design, we retrospectively identified 308 patients with cancer who had positive screening results in at least two screening rounds in the National Lung Screening Trial. We established a control group that included cancer-free patients with nodules, matched (1:1) according to the year of cancer diagnosis. By generating 10,164 sequence decision episodes, we trained RL-based policy models, incorporating nodule diameter alone, combined with nodule appearance (attenuation and margin) and/or patient information (age, sex, smoking status, pack-years, and family history). We calculated rates of misdiagnosis, missed diagnosis, and delayed diagnosis, and compared the performance of RL-based policy models with rule-based follow-up protocols (National Comprehensive Cancer Network guideline; China Guideline for the Screening and Early Detection of Lung Cancer). RESULTS: We identified significant interactions between certain variables (e.g., nodule shape and patient smoking pack-years, beyond those considered in guideline protocols) and the selection of follow-up testing intervals, thereby impacting the quality of the decision sequence. In validation, one RL-based policy model achieved rates of 12.3% for misdiagnosis, 9.7% for missed diagnosis, and 11.7% for delayed diagnosis. Compared with the two rule-based protocols, the three best-performing RL-based policy models consistently demonstrated optimal performance for specific patient subgroups based on disease characteristics (benign or malignant), nodule phenotypes (size, shape, and attenuation), and individual attributes. CONCLUSIONS: This study highlights the potential of using an RL-based approach that is both clinically interpretable and performance-robust to develop personalized lung cancer screening schedules. Our findings present opportunities for enhancing the current cancer screening system.


Subject(s)
Early Detection of Cancer , Lung Neoplasms , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/diagnostic imaging , Male , Female , Early Detection of Cancer/methods , Middle Aged , Case-Control Studies , Aged , Retrospective Studies , Tomography, X-Ray Computed/methods , Reinforcement, Psychology , Precision Medicine/methods
4.
Sci Data ; 11(1): 631, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38876990

ABSTRACT

The spatiotemporal distribution of industrial heat sources (IHS) is an important indicator for assessing levels of energy consumption and air pollution. Continuous, comprehensive, dynamic monitoring and publicly available datasets of global IHS (GIHS) are lacking and urgently needed. In this study, we built the first long-term (2012-2021) GIHS dataset based on the density-based spatiotemporal clustering method using multi-sources remote sensing data. A total of 25,544 IHS objects with 19 characteristics are identified and validated individually using high-resolution remote sensing images and point of interest (POI) data. The results show that the user's accuracy of the GIHS dataset ranges from 90.95% to 93.46%, surpassing other global IHS products in terms of accuracy, omission rates, and granularity. This long-term GIHS dataset serves as a valuable resource for understanding global environmental changes and making informed policy decisions. Its availability contributes to filling the gap in GIHS data and enhances our knowledge of global-scale industrial heat sources.

5.
Gene ; 927: 148701, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38885819

ABSTRACT

BACKGROUND: Cancer stem cells (CSCs) play a significant role in the recurrence and drug resistance of esophageal carcinoma (ESCA). Ferroptosis is a promising anticancer therapeutic strategy that effectively targets CSCs exhibiting high tumorigenicity and treatment resistance. However, there is a lack of research on the combined role of ferroptosis-related genes (FRGs) and stemness signature in the prognosis of ESCA. METHODS: The cellular compositions were characterized using single-cell RNA sequencing (scRNA-seq) data from 18 untreated ESCA samples. 50 ferroptosis-related stemness genes (FRSGs) were identified by integrating FRGs with stemness-related genes (SRGs), and then the cells were grouped by AUCell analysis. Next, functional enrichment, intercellular communication, and trajectory analyses were performed to characterize the different groups of cells. Subsequently, the stem-ferr-index was calculated using machine learning algorithms based on the expression profiles of the identified risk genes. Additionally, therapeutic drugs were predicted by analyzing the GDSC2 database. Finally, the expression and functional roles of the identified marker genes were validated through in vitro experiments. RESULTS: The analysis of scRNA-seq data demonstrates the diversity and cellular heterogeneity of ESCA. Then, we identified 50 FRSGs and classified cells into high or low ferroptosis score stemness cells accordingly. Functional enrichment analysis conducted on the differentially up-regulated genes between these groups revealed predominant enrichment in pathways associated with intercellular communication and cell differentiation. Subsequently, we identified 9 risk genes and developed a prognostic signature, termed stem_ferr_index, based on these identified risk genes. We found that the stem-ferr-index was correlated with the clinical characteristics of patients, and patients with high stem-ferr-index had poor prognosis. Furthermore, we identified four drugs (Navitoclax, Foretinib, Axitinib, and Talazoparib) with potential efficacy targeting patients with a high stem_ferr_index. Additionally, we delineated two marker genes (STMN1 and SLC2A1). Particularly noteworthy, SLC2A1 exhibited elevated expression levels in ESCA tissues and cells. We provided evidence suggesting that SLC2A1 could influence the migration, invasion, and stemness of ESCA cells, and it was associated with sensitivity to Foretinib. CONCLUSION: This study constructed a novel ferroptosis-related stemness signature, identified two marker genes for ESCA, and provided valuable insights for developing more effective therapeutic targets targeting ESCA CSCs in the future.

6.
Int Wound J ; 21(6): e14940, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38888416

ABSTRACT

Bacterial infection is the most common complication in wound healing, highlighting an urgent need for the development of innovative antibacterial technologies and treatments to address the growing threats posed by bacterial infections. Black phosphorus nanosheets (BPNSs), as a promising two-dimensional nanomaterial, have been utilized in treating infected wounds. However, BP's limited stability restricts its application. In this study, we enhance BP's stability and its antibacterial properties by anchoring gallium ions (Ga3+) onto BP's surface, creating a novel antibacterial platform. This modification reduces BP's electron density and enhances its antibacterial capabilities through a synergistic effect. Under near-infrared (NIR) irradiation, the BP/Ga3+ combination exerts antibacterial effects via photothermal therapy (PTT) and photodynamic therapy (PDT), while also releasing Ga3+. The Ga3+ employ a 'Trojan horse strategy' to disrupt iron metabolism, significantly boosting the antibacterial efficacy of the complex. This innovative material offers a viable alternative to antibiotics and holds significant promise for treating infected wounds and aiding skin reconstruction.


Subject(s)
Anti-Bacterial Agents , Gallium , Phosphorus , Wound Healing , Gallium/pharmacology , Gallium/therapeutic use , Wound Healing/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Humans , Animals , Nanostructures/therapeutic use , Wound Infection/drug therapy , Photochemotherapy/methods , Bacterial Infections/drug therapy , Mice , Photothermal Therapy/methods
7.
Medicine (Baltimore) ; 103(26): e38758, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941366

ABSTRACT

BACKGROUND: Combining hydromorphone with ropivacaine in ultrasound-guided erector spinae plane blocks enhances postoperative analgesia and reduces interleukin-6 expression in breast surgery patients. METHODS: In this study, breast cancer patients undergoing modified radical mastectomy were randomized into 3 groups for anesthesia (30 patients in each group): standard general (group C), Erector Spinae Plane Block (ESPB) with ropivacaine (group R), and ESPB with ropivacaine plus hydromorphone (group HR). Diagnosis: Breast cancer patients. Postsurgery, pain levels, IL-6, anesthetic doses, additional analgesia needs, and recovery milestones were compared to evaluate the efficacy of the ESPB enhancements. RESULTS: The 3 groups were not significantly different in baseline characteristics, operation time, number of cases with postoperative nausea, and serum IL-6 concentrations at T1 (the time of being returned to the ward after surgery). At T2 (at 6:00 in the next morning after surgery), the serum IL-6 concentration in group HR was significantly lower than that in groups R and C (P < .05); the intraoperative doses of remifentanil, sufentanil, and propofol were significantly lower in groups HR and R than those in group C (P < .05); Groups HR and R had significantly lower visual analog scale scores at T3 (4 hours postoperatively), T4 (12 hours postoperatively), and T5 (24 hours postoperatively) than those in group C (P < .05); the proportions of patients receiving postoperative remedial analgesia were significantly lower in groups HR and R than in group C (P < .05); groups HR and R had significantly lower proportions of patients with postoperative nausea than group C (P < .05); the time to the first anal exhaust and the time to the first ambulation after surgery were significantly shorter in groups HR and R than those in group C (P < .05). CONCLUSION: Hydromorphone combined with ropivacaine for ESPB achieved a greater postoperative analgesic effect for patients receiving MRM under general anesthesia. The combined analgesia caused fewer adverse reactions and inhibited the expression level of the inflammatory factor IL-6 more effectively, thereby facilitating postoperative recovery. ESPB using hydromorphone with ropivacaine improved pain control post-MRM, reduced adverse effects, and more effectively suppressed IL-6, enhancing recovery.


Subject(s)
Analgesics, Opioid , Anesthetics, Local , Breast Neoplasms , Hydromorphone , Mastectomy, Modified Radical , Nerve Block , Pain, Postoperative , Ropivacaine , Humans , Ropivacaine/administration & dosage , Ropivacaine/therapeutic use , Female , Hydromorphone/administration & dosage , Middle Aged , Nerve Block/methods , Pain, Postoperative/prevention & control , Pain, Postoperative/drug therapy , Prospective Studies , Anesthetics, Local/administration & dosage , Anesthetics, Local/therapeutic use , Breast Neoplasms/surgery , Mastectomy, Modified Radical/methods , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/therapeutic use , Adult , Interleukin-6/blood , Paraspinal Muscles/drug effects , Ultrasonography, Interventional/methods , Drug Therapy, Combination , Pain Measurement
8.
Nat Commun ; 15(1): 4760, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834654

ABSTRACT

Older livers are more prone to hepatic ischaemia/reperfusion injury (HIRI), which severely limits their utilization in liver transplantation. The potential mechanism remains unclear. Here, we demonstrate older livers exhibit increased ferroptosis during HIRI. Inhibiting ferroptosis significantly attenuates older HIRI phenotypes. Mass spectrometry reveals that fat mass and obesity-associated gene (FTO) expression is downregulated in older livers, especially during HIRI. Overexpressing FTO improves older HIRI phenotypes by inhibiting ferroptosis. Mechanistically, acyl-CoA synthetase long chain family 4 (ACSL4) and transferrin receptor protein 1 (TFRC), two key positive contributors to ferroptosis, are FTO targets. For ameliorative effect, FTO requires the inhibition of Acsl4 and Tfrc mRNA stability in a m6A-dependent manner. Furthermore, we demonstrate nicotinamide mononucleotide can upregulate FTO demethylase activity, suppressing ferroptosis and decreasing older HIRI. Collectively, these findings reveal an FTO-ACSL4/TFRC regulatory pathway that contributes to the pathogenesis of older HIRI, providing insight into the clinical translation of strategies related to the demethylase activity of FTO to improve graft function after older donor liver transplantation.


Subject(s)
Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Coenzyme A Ligases , Ferroptosis , Liver , Receptors, Transferrin , Reperfusion Injury , Up-Regulation , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Animals , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Ferroptosis/genetics , Liver/metabolism , Liver/pathology , Mice , Receptors, Transferrin/metabolism , Receptors, Transferrin/genetics , Male , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Mice, Inbred C57BL , Humans , Liver Transplantation , RNA Stability/genetics , Antigens, CD
9.
Sci Total Environ ; 945: 174093, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38906307

ABSTRACT

Black carbon (BC) and brown carbon (BrC) over the high-altitude Tibetan Plateau (TP) can significantly influence regional and global climate change as well as glacial melting. However, obtaining plateau-scale in situ observations is challenging due to its high altitude. By integrating reanalysis data with on-site measurements, the spatial distribution of BC and BrC can be accurately estimated using the random forest algorithm (RF). In our study, the on-site observations of BC and BrC were successively conducted at four sites from 2018 to 2021. Ground-level BC and BrC concentrations were then obtained at a spatial resolution of 0.25° × 0.25° for three periods (including Periods-1980, 2000, and 2020) using RF and multi-source data. The highest annual concentrations of BC (1363.9 ± 338.7 ng/m3) and BrC (372.1 ± 96.2 ng/m3) were observed during Period-2000. BC contributed a dominant proportion of carbonaceous aerosol, with concentrations 3-4 times higher than those of BrC across the three periods. The ratios of BrC to BC decreased from Period-1980 to Period-2020, indicating the increasing importance of BC over the TP. Spatial distributions of plateau-scale BC and BrC concentrations showed heightened levels in the southeastern TP, particularly during Period-2000. These findings significantly enhance our understanding of the spatio-temporal distribution of light-absorbing carbonaceous aerosol over the TP.

10.
Science ; 384(6700): 1100-1104, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38843317

ABSTRACT

One-dimensional transition metal dichalcogenides exhibiting an enhanced bulk photovoltaic effect have the potential to exceed the Shockley-Queisser limit efficiency in solar energy harvest within p-n junction architectures. However, the collective output of these prototype devices remains a challenge. We report on the synthesis of single-crystalline WS2 ribbon arrays with defined chirality and coherent polarity through an atomic manufacturing strategy. The chirality of WS2 ribbon was defined by substrate couplings into tunable armchair, zigzag, and chiral species, and the polarity direction was determined by the ribbon-precursor interfacial energy along a coherent direction. A single armchair ribbon showed strong bulk photovoltaic effect and the further integration of ~1000 aligned ribbons with coherent polarity enabled upscaling of the photocurrent.

11.
Nat Nanotechnol ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844662

ABSTRACT

Nanomaterials with a large chiroptical response and high structural stability are desirable for advanced miniaturized optical and optoelectronic applications. One-dimensional (1D) nanotubes are robust crystals with inherent and continuously tunable chiral geometries. However, their chiroptical response is typically weak and hard to control, due to the diverse structures of the coaxial tubes. Here we demonstrate that as-grown multiwalled boron nitride nanotubes (BNNTs), featuring coherent-stacking structures including near monochirality, homo-handedness and unipolarity among the component tubes, exhibit a scalable nonlinear chiroptical response. This intrinsic architecture produces a strong nonlinear optical response in individual multiwalled BNNTs, enabling second-harmonic generation (SHG) with a conversion efficiency up to 0.01% and output power at the microwatt level-both excellent figures of merit in the 1D nanomaterials family. We further show that the rich chirality of the nanotubes introduces a controllable nonlinear geometric phase, producing a chirality-dependent SHG circular dichroism with values of -0.7 to +0.7. We envision that our 1D chiral platform will enable novel functions in compact nonlinear light sources and modulators.

12.
Mol Biol Evol ; 41(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38758089

ABSTRACT

Polyploidy is a prominent mechanism of plant speciation and adaptation, yet the mechanistic understandings of duplicated gene regulation remain elusive. Chromatin structure dynamics are suggested to govern gene regulatory control. Here, we characterized genome-wide nucleosome organization and chromatin accessibility in allotetraploid cotton, Gossypium hirsutum (AADD, 2n = 4X = 52), relative to its two diploid parents (AA or DD genome) and their synthetic diploid hybrid (AD), using DNS-seq. The larger A-genome exhibited wider average nucleosome spacing in diploids, and this intergenomic difference diminished in the allopolyploid but not hybrid. Allopolyploidization also exhibited increased accessibility at promoters genome-wide and synchronized cis-regulatory motifs between subgenomes. A prominent cis-acting control was inferred for chromatin dynamics and demonstrated by transposable element removal from promoters. Linking accessibility to gene expression patterns, we found distinct regulatory effects for hybridization and later allopolyploid stages, including nuanced establishment of homoeolog expression bias and expression level dominance. Histone gene expression and nucleosome organization are coordinated through chromatin accessibility. Our study demonstrates the capability to track high-resolution chromatin structure dynamics and reveals their role in the evolution of cis-regulatory landscapes and duplicate gene expression in polyploids, illuminating regulatory ties to subgenomic asymmetry and dominance.


Subject(s)
Chromatin , Diploidy , Evolution, Molecular , Gossypium , Polyploidy , Gossypium/genetics , Chromatin/genetics , Gene Expression Regulation, Plant , Genome, Plant , Nucleosomes/genetics , Genes, Duplicate , Promoter Regions, Genetic
13.
Article in English | MEDLINE | ID: mdl-38705364

ABSTRACT

OBJECTIVE: To assess near-infrared preirradiation effects on postexercise lower-limb muscle damage and function and determine optimal dosage. DATA SOURCES: PubMed, Embase, Cochrane Library, EBSCO, Web of Science, China National Knowledge Infrastructure, and Wanfang Data were systematically searched (2009-2023). STUDY SELECTION: Randomized controlled trials of near-infrared preirradiation on lower-limb muscles after fatigue exercise were incorporated into the meta-analysis. Out of 4550 articles screened, 21 met inclusion criteria. DATA EXTRACTION: The included studies' characteristics were independently extracted by 2 authors, with discrepancies resolved through discussion or by a third author. Quality assessment was performed using the Cochrane risk of bias tool and the Grading of Recommendations, Assessment, Development, and Evaluation System. DATA SYNTHESIS: In 21 studies, near-infrared preirradiation on lower-limb muscles inhibited the decline in peak torque (standardized mean difference [SMD], 1.33; 95% confidence interval [CI], 1.08-1.59; p<.001; increasing 27.97±4.87N·m), reduced blood lactate (SMD, -0.2; 95% CI, -0.37 to -0.03; p=.272; decreasing 0.54±0.42mmol/L), decreased creatine kinase (SMD, -2.11; 95% CI, -2.57 to -1.65; p<.001; decreasing 160.07±27.96U/L), and reduced delayed-onset muscle soreness (SMD, -0.53; 95% CI, -0.81 to 0.24; p<.001). Using a 24-hour cutoff revealed 2 trends: treatment effectiveness depended on power and energy density, with optimal effects at 24.16 J/cm2 and 275 J/cm2 for energy, and 36.81 mW/cm2 and 5495 mW/cm2 for power. Noting that out of 21 studies, 19 are from Brazil, 1 from the United States, and 1 from Australia, and the results exhibit high heterogeneity. CONCLUSIONS: Although we would have preferred a more geographic dispersion of laboratories, our findings indicate that near-infrared preirradiation mitigates peak torque decline in lower-limb muscles. Influenced by energy and power density with a 24-hour threshold, optimal energy and power densities are observed at 24.16 J/cm2, 275 J/cm2, 36.81 mW/cm2, and 5495 mW/cm2, respectively. Laser preirradiation also reduces blood lactate, creatine kinase, and delayed-onset muscle soreness.

14.
Sci Total Environ ; 935: 173286, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38772492

ABSTRACT

Nitrogen cycling in terrestrial ecosystems is critical for biodiversity, vegetation productivity and biogeochemical cycling. However, little is known about the response of functional nitrogen cycle genes to global change factors in soils under different land uses. Here, we conducted a multiple hierarchical mixed effects meta-analyses of global change factors (GCFs) including warming (W+), mean altered precipitation (MAP+/-), elevated carbon dioxide concentrations (eCO2), and nitrogen addition (N+), using 2706 observations extracted from 200 peer-reviewed publications. The results showed that GCFs had significant and different effects on soil microbial communities under different types of land use. Under different land use types, such as Wetland, Tundra, Grassland, Forest, Desert and Agriculture, the richness and diversity of soil microbial communities will change accordingly due to differences in vegetation cover, soil management practices and environmental conditions. Notably, soil bacterial diversity is positively correlated with richness, but soil fungal diversity is negatively correlated with richness, when differences are driven by GCFs. For functional genes involved in nitrification, eCO2 in agricultural soils and the interaction of N+ with other GCFs in grassland soils stimulate an increase in the abundance of the AOA-amoA gene. In agricultural soil, MAP+ increases the abundance of nifH. W+ in agricultural soils and N+ in grassland soils decreased the abundance of nifH. The abundance of the genes nirS and nirK, involved in denitrification, was mainly negatively affected by W+ and positively affected by eCO2 in agricultural soil, but negatively affected by N+ in grassland soil. This meta-analysis was important for subsequent research related to global climate change. Considering data limitations, it is recommended to conduct multiple long-term integrated observational experiments to establish a scientific basis for addressing global changes in this context.


Subject(s)
Agriculture , Climate Change , Soil Microbiology , Agriculture/methods , Soil/chemistry , Microbiota , Nitrogen/analysis , Nitrogen Cycle , Ecosystem , Biodiversity
15.
Microorganisms ; 12(5)2024 May 10.
Article in English | MEDLINE | ID: mdl-38792792

ABSTRACT

To gain an in-depth understanding of the diversity and composition of soil Acidobacteria in five different forest types in typical temperate forest ecosystems and to explore their relationship with soil nutrients. The diversity of soil Acidobacteria was determined by high-throughput sequencing technology. Soil Acidobacteria's alpha-diversity index and soil nutrient content differed significantly among different forest types. ß-diversity and the composition of soil Acidobacteria also varied across forest types. Acidobacterial genera, such as Acidobacteria_Gp1, Acidobacteria_Gp4, and Acidobacteria_Gp17, play key roles in different forests. The RDA analyses pointed out that the soil pH, available nitrogen (AN), carbon to nitrogen (C/N) ratio, available phosphorus (AP), total carbon (TC), and total phosphorus (TP) were significant factors affecting soil Acidobacteria in different forest types. In this study, the diversity and composition of soil Acidobacteria under different forest types in a temperate forest ecosystem were analyzed, revealing the complex relationship between them and soil physicochemical properties. These findings not only enhance our understanding of soil microbial ecology but also provide important guidance for ecological conservation and restoration strategies for temperate forest ecosystems.

16.
Adv Sci (Weinh) ; 11(25): e2400426, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38666466

ABSTRACT

Adaptive metabolic responses and innate metabolites hold promising therapeutic potential for stroke, while targeted interventions require a thorough understanding of underlying mechanisms. Adiposity is a noted modifiable metabolic risk factor for stroke, and recent research suggests that it benefits neurological rehabilitation. During the early phase of experimental stroke, the lipidomic results showed that fat depots underwent pronounced lipolysis and released fatty acids (FAs) that feed into consequent hepatic FA oxidation and ketogenesis. Systemic supplementation with the predominant ketone beta-hydroxybutyrate (BHB) is found to exert discernible effects on preserving blood-brain barrier (BBB) integrity and facilitating neuroinflammation resolution. Meanwhile, blocking FAO-ketogenesis processes by administration of CPT1α antagonist or shRNA targeting HMGCS2 exacerbated endothelial damage and aggravated stroke severity, whereas BHB supplementation blunted these injuries. Mechanistically, it is unveiled that BHB infusion is taken up by monocarboxylic acid transporter 1 (MCT1) specifically expressed in cerebral endothelium and upregulated the expression of tight junction protein ZO-1 by enhancing local ß-hydroxybutyrylation of H3K9 at the promoter of TJP1 gene. Conclusively, an adaptive metabolic mechanism is elucidated by which acute lipolysis stimulates FAO-ketogenesis processes to restore BBB integrity after stroke. Ketogenesis functions as an early metabolic responder to restrain stroke progression, providing novel prospectives for clinical translation.


Subject(s)
3-Hydroxybutyric Acid , Blood-Brain Barrier , Disease Models, Animal , Ischemic Stroke , Zonula Occludens-1 Protein , Animals , Blood-Brain Barrier/metabolism , 3-Hydroxybutyric Acid/metabolism , 3-Hydroxybutyric Acid/pharmacology , Mice , Ischemic Stroke/metabolism , Ischemic Stroke/genetics , Zonula Occludens-1 Protein/metabolism , Zonula Occludens-1 Protein/genetics , Epigenesis, Genetic/genetics , Male , Mice, Inbred C57BL , Hydroxymethylglutaryl-CoA Synthase , Monocarboxylic Acid Transporters , Symporters
17.
ESC Heart Fail ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38600875

ABSTRACT

AIMS: Both hypercapnia and hypocapnia are common in patients with acute heart failure (AHF), but the association between partial pressure of arterial carbon dioxide (PaCO2) and AHF prognosis remains unclear. The objective of this study was to investigate the connection between PaCO2 within 24 h after admission to the intensive care unit (ICU) and mortality during hospitalization and at 1 year in AHF patients. METHODS AND RESULTS: AHF patients were enrolled from the Medical Information Mart for Intensive Care IV database. The patients were divided into three groups by PaCO2 values of <35, 35-45, and >45 mmHg. The primary outcome was to investigate the connection between PaCO2 and in-hospital mortality and 1 year mortality in AHF patients. The secondary outcome was to assess the prediction value of PaCO2 in predicting in-hospital mortality and 1 year mortality in AHF patients. A total of 2374 patients were included in this study, including 457 patients in the PaCO2 < 35 mmHg group, 1072 patients in the PaCO2 = 35-45 mmHg group, and 845 patients in the PaCO2 > 45 mmHg group. The in-hospital mortality was 19.5%, and the 1 year mortality was 23.9% in the PaCO2 < 35 mmHg group. Multivariate logistic regression analysis showed that the PaCO2 < 35 mmHg group was associated with an increased risk of in-hospital mortality [hazard ratio (HR) 1.398, 95% confidence interval (CI) 1.039-1.882, P = 0.027] and 1 year mortality (HR 1.327, 95% CI 1.020-1.728, P = 0.035) than the PaCO2 = 35-45 mmHg group. The PaCO2 > 45 mmHg group was associated with an increased risk of in-hospital mortality (HR 1.387, 95% CI 1.050-1.832, P = 0.021); the 1 year mortality showed no significant difference (HR 1.286, 95% CI 0.995-1.662, P = 0.055) compared with the PaCO2 = 35-45 mmHg group. The Kaplan-Meier survival curves showed that the PaCO2 < 35 mmHg group had a significantly lower 1 year survival rate. The area under the receiver operating characteristic curve for predicting in-hospital mortality was 0.591 (95% CI 0.526-0.656), and the 1 year mortality was 0.566 (95% CI 0.505-0.627) in the PaCO2 < 35 mmHg group. CONCLUSIONS: In AHF patients, hypocapnia within 24 h after admission to the ICU was associated with increased in-hospital mortality and 1 year mortality. However, the increase in 1 year mortality may be influenced by hospitalization mortality. Hypercapnia was associated with increased in-hospital mortality.

18.
Infect Drug Resist ; 17: 1099-1105, 2024.
Article in English | MEDLINE | ID: mdl-38590553

ABSTRACT

Purpose: To explore the clinical characteristics, diagnosis, and treatment of family outbreak of psittacosis and to improve the success rate of treatment. Patients and Methods: The clinical characteristics, diagnosis, treatment, and outcome of family outbreak of psittacosis, which consists three patients, diagnosed by clinical analysis and metagenomic next-generation sequencing (mNGS) in our hospital were analyzed retrospectively. Results: We report on three instances of clustered atypical pneumonia, which were caused by Chlamydia psittaci during the COVID-19 pandemic. All patients exhibited symptoms of fever and cough, while one patient also experienced gastrointestinal symptoms such as nausea, vomiting, and diarrhea. Laboratory tests indicated no significant increase in leukocytes and neutrophils, but a mild increase in C-reactive protein was observed in all three patients. Chest computed tomography (CT) scans revealed a consolidation shadow in a unilateral lung lobe in all three patients. Both patients were treated with empirical moxifloxacin, yielding unsatisfactory outcomes. mNGS was conducted on sputum samples from one adult patient, revealing the presence of Chlamydia psittaci. Additional doxycycline was prescribed immediately, and then the patients' temperatures were stabilized, and the lesion in chest CT was absorbed. The pediatric patient exhibited less severe symptoms compared to the adult patients and exhibited a favorable response to azithromycin administration. Conclusion: This study reports a cluster of a family outbreak of atypical pneumonia caused by C. psittaci in China. The occurrence of a family outbreak during the COVID-19 pandemic may be attributed to familial aggregation resulting from the epidemic. The three cases reported in this study did not experience severe complications, which can be attributed to the prompt medical intervention and swift diagnosis. This finding implies the need to enhance patients' awareness and vigilance towards their health. Additionally, mNGS emerges as a valuable technique for accurately identifying pathogens causing pulmonary infections.

19.
Heliyon ; 10(7): e27963, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38586383

ABSTRACT

Rationale and objectives: The computed tomography (CT) score has been used to evaluate the severity of COVID-19 during the pandemic; however, most studies have overlooked the impact of infection duration on the CT score. This study aimed to determine the optimal cutoff CT score value for identifying severe/critical COVID-19 during different stages of infection and to construct corresponding predictive models using radiological characteristics and clinical factors. Materials and methods: This retrospective study collected consecutive baseline chest CT images of confirmed COVID-19 patients from a fever clinic at a tertiary referral hospital from November 28, 2022, to January 8, 2023. Cohorts were divided into three subcohorts according to the time interval from symptom onset to CT examination at the hospital: early phase (0-3 days), intermediate phase (4-7 days), and late phase (8-14 days). The binary endpoints were mild/moderate and severe/critical infection. The CT scores and qualitative CT features were manually evaluated. A logistic regression analysis was performed on the CT score as determined by a visual assessment to predict severe/critical infection. Receiver operating characteristic analysis was performed and the area under the curve (AUC) was calculated. The optimal cutoff value was determined by maximizing the Youden index in each subcohort. A radiology score and integrated models were then constructed by combining the qualitative CT features and clinical features, respectively, using multivariate logistic regression with stepwise elimination. Results: A total of 962 patients (aged, 61.7 ± 19.6 years; 490 men) were included; 179 (18.6%) were classified as severe/critical COVID-19, while 344 (35.8%) had a typical Radiological Society of North America (RSNA) COVID-19 appearance. The AUCs of the CT score models reached 0.91 (95% confidence interval (CI) 0.88-0.94), 0.82 (95% CI 0.76-0.87), and 0.83 (95% CI 0.77-0.89) during the early, intermediate, and late phases, respectively. The best cutoff values of the CT scores during each phase were 1.5, 4.5, and 5.5. The predictive accuracies associated with the time-dependent cutoff values reached 88% (vs.78%), 73% (vs. 63%), and 87% (vs. 57%), which were greater than those associated with universal cutoff value (all P < 0.001). The radiology score models reached AUCs of 0.96 (95% CI 0.94-0.98), 0.90 (95% CI 0.87-0.94), and 0.89 (95% CI 0.84-0.94) during the early, intermediate, and late phases, respectively. The integrated models including demographic and clinical risk factors greatly enhanced the AUC during the intermediate and late phases compared with the values obtained with the radiology score models; however, an improvement in accuracy was not observed. Conclusion: The time interval between symptom onset and CT examination should be tracked to determine the cutoff value for the CT score for identifying severe/critical COVID-19. The radiology score combining qualitative CT features and the CT score complements clinical factors for identifying severe/critical COVID-19 patients and facilitates timely hierarchical diagnoses and treatment.

20.
Sports Health ; : 19417381241235147, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587041

ABSTRACT

CONTEXT: Nontraumatic knee conditions are common in clinical practice. Existing pharmaceutical and immobilization approaches provide limited pain relief and functional enhancement. Low-intensity bloodflow restriction training (LI-BFRT) is being investigated as a nonpharmacological alternative; however, its efficacy is uncertain. OBJECTIVE: To assess the effectiveness of LI-BFRT for nontraumatic knee conditions and compare it with high-intensity resistance training (HI-RT) and low-intensity resistance training (LI-RT). DATA SOURCES: PubMed, EBSCO, Science Direct, Cochrane Library, China Knowledge Infrastructure, Wanfang Data, and VIP databases were searched until May 30, 2023. STUDY SELECTION: Original randomized controlled trials involving nontraumatic knee joint conditions with interventions consisting mainly of LI-BFRT, HI-RT, or LI-RT. The results assessed mainly pain and muscle performance. STUDY DESIGN: Systematic review and meta-analysis. LEVEL OF EVIDENCE: Level 1. DATA EXTRACTION: Sample characteristics, study design, country, disease, groups, evaluation time, duration, and outcomes were extracted. RESULTS: A total of 13 randomized controlled trials were included in the systematic review. Compared with pretreatment, LI-BFRT significantly alleviated pain (weighted standardized mean difference [SMD], -1.33; 95% CI, -1.62 to -1.05), with better additional effects on hip muscle training (SMD, -3.14; 95% CI, -4.07 to -2.75). Compared with LI-RT, LI-BFRT significantly relieved pain in male patients (SMD, -1.47; 95% CI, -1.92 to -1.01). LI-BFRT significantly increased quadriceps cross-sectional area (SMD, 0.53; 95% CI, 0.27-0.78), knee extension strength (SMD, 0.84; 95% CI, 0.48-1.2), and leg press strength (SMD, 0.64; 95% CI, 0.34-0.94) compared with pretreatment. Its effects were superior to those of LI-RT and similar to those of HI-RT. However, sex differences in muscle strength improvement were observed. CONCLUSION: In patients with nontraumatic knee joint conditions, LI-BFRT effectively alleviated pain, increased muscle cross-sectional area, and enhanced muscle strength. LI-BFRT showed pain relief comparable with that of LI-RT while surpassing LI-RT in muscle growth and strength improvement.

SELECTION OF CITATIONS
SEARCH DETAIL