Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 300
Filter
1.
Front Pharmacol ; 15: 1419369, 2024.
Article in English | MEDLINE | ID: mdl-39086394

ABSTRACT

Background: High-intensity chemotherapy can cause life-threatening complications in pediatric patients. Therefore, this study investigated safety and efficacy of long-acting pegylated recombinant human granulocyte colony-stimulating factor (PEG-rhG-CSF; Jinyouli®) in children undergoing high-intensity chemotherapy. Methods: Treatment-naive patients received post-chemotherapy PEG-rhG-CSF as primary prophylaxis for two cycles. The primary endpoints were drug-related adverse events (AEs) and bone pain scores. Secondary endpoints included grade 3-4 neutropenia, duration of neutropenia recovery, absolute neutrophil count changes, febrile neutropenia (FN), reduced chemotherapy intensity, antibiotic usage, and AE severity. The cost-effectiveness of PEG-rhG-CSF was compared with that of rhG-CSF (Ruibai®). Results: Here, 307 and 288 patients underwent one and two PEG-rhG-CSF cycles, respectively. Ninety-one patients experienced drug-related AEs, primarily bone pain (12.7%). Moreover, Grade 3-4 neutropenia and FN were observed. Median FN durations were 3.0 days in both cycles. No drug-related delays were observed during chemotherapy. One patient experienced grade 4 neutropenia-induced reduction in chemotherapy intensity during cycle 2. In total, 138 patients received antibiotics. PEG-rhG-CSF exhibited superior cost-effectiveness compared to rhG-CSF. Conclusion: Our findings indicate that PEG-rhG-CSF is safe, efficient, and cost-effective in pediatric patients undergoing high-intensity chemotherapy, providing preliminary evidence warranting further randomized controlled trials.

2.
World J Clin Cases ; 12(22): 4905-4912, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39109002

ABSTRACT

BACKGROUND: Spastic pelvic floor syndrome (SPFS) is a refractory pelvic floor disease characterized by abnormal (uncoordinated) contractions of the external anal sphincter and puborectalis muscle during defecation, resulting in rectal emptation and obstructive constipation. The clinical manifestations of SPFS are mainly characterized by difficult defecation, often accompanied by a sense of anal blockage and drooping. Manual defecation is usually needed during defecation. From physical examination, it is commonly observed that the patient's anal muscle tension is high, and it is difficult or even impossible to enter with his fingers. AIM: To investigate the characteristics of anorectal pressure and botulinum toxin A injection combined with biofeedback in treating pelvic floor muscle spasm syndrome. METHODS: Retrospective analysis of 50 patients diagnosed with pelvic floor spasm syndrome. All patients underwent pelvic floor surface electromyography assessment, anorectal dynamics examination, botulinum toxin type A injection 100 U intramuscular injection, and two cycles of biofeedback therapy. RESULTS: After the botulinum toxin A injection combined with two cycles of biofeedback therapy, the patient's postoperative resting and systolic blood pressure were significantly lower than before surgery (P < 0.05). Moreover, the electromyography index of the patients in the resting stage and post-resting stages was significantly lower than before surgery (P < 0.05). CONCLUSION: Botulinum toxin A injection combined with biofeedback can significantly reduce pelvic floor muscle tension in treating pelvic floor muscle spasm syndrome. Anorectal manometry is an effective method to evaluate the efficacy of treatment objectively. However, randomized controlled trials are needed.

3.
EClinicalMedicine ; 73: 102701, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39007065

ABSTRACT

Background: The combined vincristine, pegylated liposomal doxorubicin (PLD), and cyclophosphamide (VPC) regimen has never been studied in pediatric patients. Methods: This open-label, single-center, single-arm phase I study utilizing a "3 + 3" design enrolled children with relapsed/refractory (R/R) solid tumors. Three dose levels of PLD (Duomeisu®) were studied (30, 40, or 50 mg/m2) in combination with cyclophosphamide (1500 mg/m2), mesna (1500 mg/m2), and vincristine (1.5 mg/m2, maximum 2 mg) once every 3 weeks. The primary endpoints included safety, the maximum tolerated dose (MTD) of PLD (Duomeisu®), and the recommended phase 2 dose (RP2D) of PLD (Duomeisu®) for further phase 2 investigation. The secondary endpoints were objective response rate (ORR) and disease control rate (DCR). This study is registered with ClinicalTrials.gov, NCT04213612. Findings: Between January 7, 2020, and November 18, 2021, 34 patients were eligible and evaluable for toxicity, while 26 patients were evaluable for response. The MTD of PLD (Duomeisu®) was 30 mg/m2. The most common adverse event (AE) was grade 3 or 4 neutropenia (61.8%). The most common grade 1 or 2 non-hematologic AE and cardiotoxicity effects were vomiting (35.3%) and abnormal electrocardiogram T waves (20.6%), respectively. ORR and DCR to VPC regimen after two cycles were 50.0% and 92.3%, respectively. Targeted gene panel sequencing revealed the activation of TP53 mutation may be an adverse prognostic factor. Interpretation: The VPC regimen showed a promising safety profile and had preliminary efficacy in children with R/R solid tumors. The RP2D for PLD (Duomeisu®) combined with cyclophosphamide and vincristine is 30 mg/m2 once every 3 weeks. Funding: CSPC Ouyi Pharmaceutical Co., Ltd., Shijiazhuang, the National Key Research and Development Program of China [No. 2022YFC2705005], the National Natural Science Foundation of China [No. 82203303], and the Basic and Applied Basic Research Foundation of Guangdong Province [No. 2021A1515110234].

4.
Heliyon ; 10(12): e33287, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39027455

ABSTRACT

The consequences caused by bacterial resistance are becoming more and more serious. The rate of antibiotic development is far behind the rate of bacterial resistance, so it is urgent to develop a new drug system. In this study, photoresponsive nanogels based on hyaluronic acid were prepared and loaded with ciprofloxacin as a model molecule. The results showed that the nanogels had the advantages of high stability and good cytocompatibility. The inhibition effect of drug-loaded nanogels after light irradiation on the growth of Staphylococcus aureus and Salmonella typhimurium was significantly better than that before light irradiation, and ciprofloxacin could be released on demand and in control. This strategy is of great significance to reduce the unnecessary use of antibiotics and weaken bacterial resistance.

5.
Heliyon ; 10(12): e33015, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39027461

ABSTRACT

Japanese encephalitis (JE) vaccination is the most effective way to prevent JE. Plaque reduction neutralization test (PRNT) as the standard method for potency testing for inactivated JE vaccine could not provide the exact potency value. Envelope (E) protein of JE virus induces the body to create neutralizing antibodies. There is a potential for using the determination of E protein to assess the immunogenicity and efficacy of JE vaccine. In this study, an automatic time-resolved fluoroimmunoassay for detection of E protein in JE vaccine was established as a simple and rapid in vitro potency assay to complement PRNT, including the expression and paired screening of monoclonal antibodies, the establishment of assay method and performance verification. A pair of anti-E protein neutralizing antibodies (L022 and L034) were screened to construct the sandwich detection pattern. After pre-treating the vaccine sample, the entire analysis was performed using a fully automated machine, which had a little detection time and eliminated manual error. The results of the validation experiment met the requirements for quality control. The linear range was from 0.78125 U/mL to 25 U/mL, the sensitivity was 0.01 U/mL, the intra-assay coefficient of variation was less than 5 %, and the inter-assay coefficient of variation was less than 10 %. The recovery from the dilution was between 90 % and 110 %. This present TRFIA shown good stability and effectiveness in quality control for samples related to JE vaccine production. The outcomes demonstrated that the present TRFIA could be an alternative in vitro potency assay in quality control for inactivated JE vaccine.

6.
Eur J Med Chem ; 276: 116722, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39079309

ABSTRACT

Fluorine possesses distinctive chemical characteristics, such as its strong electron-withdrawing ability and small atomic size, which render it an invaluable asset in the design and optimization of pharmaceuticals. The utilization of fluorine-enriched medications for combating cancer has emerged as a prominent approach in medicinal chemistry and drug discovery, offering improved clinical outcomes and enhanced pharmacological properties. This comprehensive review explores the synthetic approaches and clinical applications of approved 22 representative fluorinated anti-cancer drugs from 2019 to present, shedding light on their historical development, brand names, drug target activity, mechanism of action, preclinical pharmacodynamics, clinical efficacy, and toxicity. Additionally, the review provides an extensive analysis of the representative synthetic techniques employed. Overall, this review emphasizes the significance of incorporating fluorine chemistry into anti-cancer drug research while highlighting promising future prospects for exploring compounds enriched with fluorine in the battle against cancer.


Subject(s)
Antineoplastic Agents , Fluorine , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Fluorine/chemistry , Neoplasms/drug therapy , Animals , Molecular Structure
7.
Front Microbiol ; 15: 1432320, 2024.
Article in English | MEDLINE | ID: mdl-39044954

ABSTRACT

The emergence and widespread of tigecycline resistance undoubtedly poses a serious threat to public health globally. The exploration of combination therapies has become preferred antibacterial strategies to alleviate this global burden. In this study, tigecycline-resistant tet(X4)-positive Escherichia coli were selected for adjuvant screening. Interestingly, 9-aminominocycline (9-AMC), one of the tigecycline metabolites, exhibits synergistic antibacterial activity with tigecycline using checkerboard assay. The efficacy in vitro and in vivo was evaluated, and the synergistic mechanism was further explored. The results suggested that 9-AMC combined with tigecycline could inhibit the growth of antibiotic resistant bacteria, efficiently retard the evolution of tet(X4) gene and narrow the drug mutant selection window. In addition, the combination of tigecycline and 9-AMC could destroy the normal membrane structure of bacteria, inhibit the formation of biofilm, remarkably reduce the level of intracellular ATP level, and accelerate the oxidative damage of bacteria. Furthermore, 9-AMC is more stable in the bind of Tet(X4) inactivating enzyme. The transcriptomics analysis revealed that the genes related to the 9-AMC and tigecycline were mainly enriched in ABC transporters. Collectively, the results reveal the potentiation effects on tigecycline and the probability of 9-AMC as a novel tigecycline adjuvant against tet(X4)-positive Escherichia coli, which provides new insights for adjuvant screening.

8.
Adv Mater ; : e2403223, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896500

ABSTRACT

Incorporating passive radiative cooling and heating into personal thermal management has attracted tremendous attention. However, most current thermal management materials are usually monofunctional with a narrow temperature regulation range, and lack breathability, softness, and stretchability, resulting in a poor wearer experience and limited application scenarios. Herein, a breathable dual-mode leather-like nanotextile (LNT) with asymmetrical wrinkle photonic microstructures and Janus wettability for highly efficient personal thermal management is developed via a one-step electrospinning technique. The LNT is synthesized by self-bonding a hydrophilic cooling layer with welding fiber networks onto a hydrophobic photothermal layer, constructing bilayer wrinkle structures that offer remarkable optical properties, a wetting gradient, and unique textures. The resultant LNT exhibits efficient cooling capacity (22.0 °C) and heating capacity (22.1 °C) under sunlight, expanding the thermal management zone (28.3 °C wider than typical textiles). Additionally, it possesses favorable breathability, softness, stretchability, and sweat-wicking capability. Actual wearing tests demonstrate that the LNT can provide a comfortable microenvironment for the human body (1.6-8.0 °C cooler and 1.0-7.1 °C warmer than typical textiles) in changing weather conditions. Such a wearable dual-mode LNT presents great potential for personal thermal comfort and opens up new possibilities for all-weather smart clothing.

9.
Cell Commun Signal ; 22(1): 339, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898473

ABSTRACT

BACKGROUND: Endocrine resistance driven by sustained activation of androgen receptor (AR) signaling pathway in advanced prostate cancer (PCa) is fatal. Characterization of mechanisms underlying aberrant AR pathway activation to search for potential therapeutic strategy is particularly important. Rac GTPase-activating protein 1 (RACGAP1) is one of the specific GTPase-activating proteins. As a novel tumor proto-oncogene, overexpression of RACGAP1 was related to the occurrence of various tumors. METHODS: Bioinformatics methods were used to analyze the relationship of expression level between RACGAP1 and AR as well as AR pathway activation. qRT-PCR and western blotting assays were performed to assess the expression of AR/AR-V7 and RACGAP1 in PCa cells. Immunoprecipitation and immunofluorescence experiments were conducted to detect the interaction and co-localization between RACGAP1 and AR/AR-V7. Gain- and loss-of-function analyses were conducted to investigate the biological roles of RACGAP1 in PCa cells, using MTS and colony formation assays. In vivo experiments were conducted to evaluate the effect of RACGAP1 inhibition on the tumor growth. RESULTS: RACGAP1 was a gene activated by AR, which was markedly upregulated in PCa patients with CRPC and enzalutamide resistance. AR transcriptionally activated RACGAP1 expression by binding to its promoter region. Reciprocally, nuclear RACGAP1 bound to the N-terminal domain (NTD) of both AR and AR-V7, blocking their interaction with the E3 ubiquitin ligase MDM2. Consequently, this prevented the degradation of AR/AR-V7 in a ubiquitin-proteasome-dependent pathway. Notably, the positive feedback loop between RACGAP1 and AR/AR-V7 contributed to endocrine therapy resistance of CRPC. Combination of enzalutamide and in vivo cholesterol-conjugated RIG-I siRNA drugs targeting RACGAP1 induced potent inhibition of xenograft tumor growth of PCa. CONCLUSION: In summary, our results reveal that reciprocal regulation between RACGAP1 and AR/AR-V7 contributes to the endocrine resistance in PCa. These findings highlight the therapeutic potential of combined RACGAP1 inhibition and enzalutamide in treatment of advanced PCa.


Subject(s)
Drug Resistance, Neoplasm , GTPase-Activating Proteins , Prostatic Neoplasms , Receptors, Androgen , Male , Humans , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Cell Line, Tumor , Animals , Proto-Oncogene Mas , Gene Expression Regulation, Neoplastic/drug effects , Phenylthiohydantoin/pharmacology , Mice, Nude , Nitriles/pharmacology , Mice , Benzamides/pharmacology , Cell Proliferation/drug effects , Cell Proliferation/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Proto-Oncogene Proteins c-mdm2/genetics , Signal Transduction/drug effects , Signal Transduction/genetics
10.
Environ Sci Technol ; 58(21): 9292-9302, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38752544

ABSTRACT

The fate of sulfonamide antibiotics in farmlands is crucial for food and ecological safety, yet it remains unclear. We used [phenyl-U-14C]-labeled sulfamethoxazole (14C-SMX) to quantitatively investigate the fate of SMX in a soil-maize system for 60 days, based on a six-pool fate model. Formation of nonextractable residues (NERs) was the predominant fate for SMX in unplanted soil, accompanied by minor mineralization. Notably, maize plants significantly increased SMX dissipation (kinetic constant kd = 0.30 day-1 vs 0.17 day-1), while substantially reducing the NER formation (92% vs 58% of initially applied SMX) and accumulating SMX (40%, mostly bound to roots). Significant NERs (maximal 29-42%) were formed via physicochemical entrapment (determined using silylation), which could partially be released and taken up by maize plants. The NERs consisted of a considerable amount of SMX formed via entrapment (1-8%) and alkali-hydrolyzable covalent bonds (2-12%, possibly amide linkage). Six and 10 transformation products were quantified in soil extracts and NERs, respectively, including products of hydroxyl substitution, deamination, and N-acylation, among which N-lactylated SMX was found for the first time. Our findings reveal the composition and instability of SMX-derived NERs in the soil-plant system and underscore the need to study the long-term impacts of reversible NERs.


Subject(s)
Soil Pollutants , Soil , Sulfamethoxazole , Zea mays , Soil/chemistry , Farms
11.
Cancer Res Treat ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38810968

ABSTRACT

Purpose: The risk stratification of pediatric anaplastic large cell lymphoma (ALCL) has not been standardized. In this study, new risk factors were included to establish a new risk stratification system for ALCL, and its feasibility in clinical practice was explored. Materials and Methods: On the basis of the non-Hodgkin's lymphoma Berlin-Frankfurt-Munster 95 (NHL-BFM-95) protocol, patients with minimal disseminated disease (MDD), high-risk tumor site (multiple bone, skin, liver, and lung involvement), and small cell/lymphohistiocytic (SC/LH) pathological subtype were enrolled in risk stratification. Patients were treated with a modified NHL-BFM-95 protocol combined with an anaplastic lymphoma kinase inhibitor or vinblastine (VBL). Results: A total of 136 patients were enrolled in this study. The median age was 8.8 years. The 3-year event-free survival (EFS) and overall survival of the entire cohort were 77.7% [95% Confidence Interval (CI), 69.0%-83.9%] and 92.3% (95% CI,86.1%-95.8%), respectively. The 3-year EFS rates of low-risk group (R1), intermediate-risk group (R2), and high-risk group (R3) patients were 100%, 89.5% (95% CI, 76.5%-95.5%, and 67.9% (95% CI, 55.4%-77.6%), respectively. The prognosis of patients with MDD (+), stage IV cancer, SC/LH lymphoma, and high-risk sites was poor, and the 3-year EFS rates were 45.3% (95% CI, 68.6%-19.0%), 65.7% (95% CI, 47.6%-78.9%), 55.7% (95% CI, 26.2%-77.5%), and 70.7% (95% CI, 48.6%-84.6%), respectively. At the end of follow-up, one of the 5 patients who received maintenance therapy with VBL relapsed, and seven patients receiving ALK inhibitor maintenance therapy did not experience relapse. Conclusion: This study has confirmed the poor prognostic of MDD (+) ,high risk site and SC/LH ,but patients with SC/LH lymphoma and MDD (+) at diagnosis still need to receive better treatment (ClinicalTrials.gov number, NCT03971305).

12.
Int J Nurs Stud ; 156: 104786, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38788260

ABSTRACT

BACKGROUND: While the health benefits of physical activity for general population are well-recognized, the prospective associations of physical activity volume and intensity with mortality among cardiometabolic disease individuals remain unclear. OBJECTIVE: The objective of this study was to investigate the associations of accelerometer-measured intensity-specific physical activity with mortality risk among population with cardiometabolic disease. DESIGN: Prospective cohort study. SETTING: Participants were recruited from the United Kingdom (UK) across 22 assessment centers from 2006 to 2010. PARTICIPANTS: A total of 9524 participants from the UK Biobank (median: 67.00 years, interquartile range: 61.00-70.00 years) were included in final study. METHODS: Accelerometer-measured total volume, moderate-to-vigorous and light intensity physical activity collecting from 2013 to 2015 were quantified using a machine learning model. Multivariable restricted cubic splines and Cox proportional hazard models with hazard ratios (HRs) and 95 % confidence intervals (CIs) were employed to examine the associations of interests. RESULTS: During the follow-up period (median: 6.87 years; interquartile range: 6.32-7.39 years), there were 659 (6.92 %) death events with 218 (2.29 %) cardiovascular disease-related deaths and 441 (4.63 %) non-cardiovascular disease-related deaths separately. In the fully adjusted models, compared with participants in the lowest quartiles of total volume, moderate-to-vigorous and light physical activities, the adjusted HRs (95 % CIs) of all-cause mortality for those in the highest quartiles were 0.40 (0.31, 0.52), 0.48 (0.37, 0.61), and 0.56 (0.44, 0.71) while those for cardiovascular diseases-related mortality were 0.35 (0.22, 0.55), 0.52 (0.35, 0.78) and 0.59 (0.39, 0.88), and for non-cardiovascular diseases-related mortality, they were 0.42 (0.30, 0.59), 0.40 (0.29, 0.54) and 0.54 (0.40, 0.73), separately. The optimal moderate-to-vigorous-intensity physical activity level for cardiovascular diseases-related mortality reduction was found to be in the third quartile (17.75-35.33 min/day). Furthermore, the observed inverse associations were mainly non-linear. CONCLUSIONS: Promoting physical activity, regardless of intensity, is essential for individuals with cardiometabolic disease to reduce mortality risk. For both all-cause and cardiovascular disease-related and non-cardiovascular disease-related mortality, the observed decrease in risk seems to level off at a moderate level. The current findings deriving from precise device-based physical activity data provide inference for secondary prevention of cardiometabolic disease.


Subject(s)
Accelerometry , Biological Specimen Banks , Cardiovascular Diseases , Exercise , Humans , United Kingdom/epidemiology , Prospective Studies , Middle Aged , Male , Female , Cardiovascular Diseases/mortality , Aged , Risk Factors , UK Biobank
13.
Toxicology ; 504: 153807, 2024 May.
Article in English | MEDLINE | ID: mdl-38641160

ABSTRACT

Decabromodiphenyl ether (BDE209) has been demonstrated to be associated with thyroid dysfunction and thyroid carcinoma risk as a widely used brominated flame retardants. Although dabrafenib has been confirmed to be a promising therapeutic agent for papillary thyroid carcinoma (PTC) harboring BRAFV600E mutation, the rapid acquired dabrafenib resistance has brought a great challenge to clinical improvement and the underpinning mechanisms remain poorly defined. By treating PTC-derived and normal follicular epithelial cell lines with BDE209, we assessed its impact on the MAPK pathway's activation and evaluated the resultant effects on cell viability and signaling pathways, utilizing methods such as Western blot, IF staining, and RNA-seq bioinformatic analysis. Our findings reveal that BDE209 exacerbates MAPK activation, undermining dabrafenib's inhibitory effects by triggering the EGFR pathway, thereby highlighting BDE209's potential to diminish the pharmacological efficacy of dabrafenib in treating BRAF-mutated PTC. This research underscores the importance of considering environmental factors like BDE209 exposure in the effective management of thyroid carcinoma treatment strategies.


Subject(s)
ErbB Receptors , Halogenated Diphenyl Ethers , Imidazoles , Mutation , Oximes , Proto-Oncogene Proteins B-raf , Thyroid Cancer, Papillary , Thyroid Neoplasms , Humans , Proto-Oncogene Proteins B-raf/genetics , Halogenated Diphenyl Ethers/toxicity , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/drug therapy , Thyroid Cancer, Papillary/pathology , Oximes/pharmacology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/pathology , Imidazoles/pharmacology , Cell Line, Tumor , ErbB Receptors/genetics , ErbB Receptors/metabolism , Drug Resistance, Neoplasm/drug effects , Antineoplastic Agents/pharmacology , MAP Kinase Signaling System/drug effects , Cell Survival/drug effects
14.
Evol Bioinform Online ; 20: 11769343241249017, 2024.
Article in English | MEDLINE | ID: mdl-38680615

ABSTRACT

Background: Intestinal metaplasia (IM) of gastric epithelium has traditionally been regarded as an irreversible stage in the process of the Correa cascade. Exploring the potential molecular mechanism of IM is significant for effective gastric cancer prevention. Methods: The GSE78523 dataset, obtained from the Gene Expression Omnibus (GEO) database, was analyzed using RStudio software to identify the differently expressed genes (DEGs) between IM tissues and normal gastric epithelial tissues. Subsequently, gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, Gene Set Enrichment Analysis (GESA), and protein-protein interaction (PPI) analysis were used to find potential genes. Additionally, the screened genes were analyzed for clinical, immunological, and genetic correlation aspects using single gene clinical correlation analysis (UALCAN), Tumor-Immune System Interactions Database (TISIDB), and validated through western blot experiments. Results: Enrichment analysis showed that the lipid metabolic pathway was significantly associated with IM tissues and the apolipoprotein B (APOB) gene was identified in the subsequent analysis. Experiment results and correlation analysis showed that the expression of APOB was higher in IM tissues than in normal tissues. This elevated expression of APOB was also found to be associated with the expression levels of hepatocyte nuclear factor 4A (HNF4A) gene. HNF4A was also found to be associated with immune cell infiltration to gastric cancer and was linked to the prognosis of gastric cancer patients. Moreover, HNF4A was also highly expressed in both IM tissues and gastric cancer cells. Conclusion: Our findings indicate that HNF4A regulates the microenvironment of lipid metabolism in IM tissues by targeting APOB. Higher expression of HNF4A tends to lead to a worse prognosis in gastric cancer patients implying it may serve as a predictive indicator for the progression from IM to gastric cancer.

15.
BMC Nurs ; 23(1): 167, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459516

ABSTRACT

Nursing students, who comprise a high percentage of China's college students, experience many psychological problems; however, few studies explored the mechanisms underlying these problems. This cross-sectional study explored the relationships and mechanisms of depression, anxiety, stress, and narrative disorders in senior nursing students. Questionnaires were administered to 380 senior nursing students in Hubei Province using the Sociodemographic Questionnaire, Toronto Alexithymia-20 Scale, Perceived Social Support Scale, 10-Item Connor-Davidson Resilience Scale, and Depression-Anxiety-Stress Scale. After controlling for sociodemographic variables, Hayes' PROCESS macros were used to test how psychological resilience moderates the relationships among narrative disorders, negative affect, and perceived social support. Bootstrap confidence intervals tested for indirect effects. Correlation analyses revealed that alexithymia was correlated significantly positively with depression-anxiety-stress (r = 0.57, 0.56, and 0.58, resp.) and significantly negatively with perceived social support (r = 0-0.46). Psychological resilience was correlated significantly negatively with alexithymia (r=-0.39) and depression-anxiety-stress (r=-0.31, -0.30, and-0.32, resp.) but significantly positively with perceived social support(r = 0.50). Perceived social support was correlated significantly negatively with depression-anxiety-stress (r=-0.33, -0.34, and - 0.42 resp.). Stress was correlated significantly positively with anxiety and depression (r = 0.81 and 0.77, resp.). Psychological resilience was a partial mediator between depression and dysphoria (ß=-0.08, p < 0.05). Dysphoria directly predicted anxiety (ß = 0.31) and stress (ß = 0.37); moreover,alexithymia predicted depression not only directly but also through the mediating effect of psychological resilience. Therefore, educators and clinical administrators must promote and recognise negative emotions among nursing students to help ensure the nursing workforce's stability.

16.
Toxicol Appl Pharmacol ; 486: 116914, 2024 May.
Article in English | MEDLINE | ID: mdl-38522585

ABSTRACT

Ferroptosis has been shown to be involved in carbon tetrachloride (CCl4)-induced acute liver injury (ALI). The mitochondrion-targeted antioxidant MitoQ can eliminate the production of mitochondrial reactive oxygen species (mtROS). This study investigated the role of MitoQ in CCl4-induced hepatocytic ferroptosis and ALI. MDA and 4HNE were elevated in CCl4-induced mice. In vitro, CCl4 exposure elevated the levels of oxidized lipids in HepG2 cells. Alterations in the mitochondrial ultrastructure of hepatocytes were observed in the livers of CCl4-evoked mice. Ferrostatin-1 (Fer-1) attenuated CCl4-induced hepatic lipid peroxidation, mitochondrial ultrastructure alterations and ALI. Mechanistically, acyl-CoA synthetase long-chain family member 4 (ACSL4) was upregulated in CCl4-exposed human hepatocytes and mouse livers. The ACSL4 inhibitor rosiglitazone alleviated CCl4-induced hepatic lipid peroxidation and ALI. ACSL4 knockdown inhibited oxidized lipids in CCl4-exposed human hepatocytes. Moreover, CCl4 exposure decreased the mitochondrial membrane potential and OXPHOS subunit levels and increased the mtROS level in HepG2 cells. Correspondingly, MitoQ pretreatment inhibited the upregulation of ACSL4 in CCl4-evoked mouse livers and HepG2 cells. MitoQ attenuated lipid peroxidation in vivo and in vitro after CCl4 exposure. Finally, MitoQ pretreatment alleviated CCl4-induced hepatocytic ferroptosis and ALI. These findings suggest that MitoQ protects against hepatocyte ferroptosis in CCl4-induced ALI via the mtROS-ACSL4 pathway.


Subject(s)
Carbon Tetrachloride , Chemical and Drug Induced Liver Injury , Coenzyme A Ligases , Ferroptosis , Hepatocytes , Mice, Inbred C57BL , Organophosphorus Compounds , Reactive Oxygen Species , Up-Regulation , Animals , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Up-Regulation/drug effects , Hep G2 Cells , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Mice , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/metabolism , Ferroptosis/drug effects , Carbon Tetrachloride/toxicity , Reactive Oxygen Species/metabolism , Male , Organophosphorus Compounds/pharmacology , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology , Antioxidants/pharmacology , Lipid Peroxidation/drug effects
17.
J Agric Food Chem ; 72(12): 6638-6650, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38482854

ABSTRACT

Accurate quantification of mycotoxin in cereals is crucial for ensuring food safety and human health. However, the preparation of traditional multisample external calibration curves (MSCCs) is labor-intensive and error-prone. Here, a multiple isotopologue reaction-monitoring (MIRM)-LC-MS/MS method for accurate quantitation of ten major mycotoxins in cereals was successfully developed and validated, where a novel one-sample multipoint calibration curve (OSCC) strategy is used instead of MSCCs. The OSCC can be established by examining the correlation between the calculated theoretical isotopic abundances and the measured abundance across various MIRM channels. In comparison to the MSCC, the OSCC strategy exhibits outstanding performance including superior selectivity, accuracy (78.4-108.6%), and precision (<12.5%). Furthermore, the proposed OSCC-MIRM-LC-MS/MS method was successfully applied to investigate mycotoxin contamination in cereal samples in China. Considering the advantages of simplified workflows and improved throughput, the OSCC-MIRM-LC-MS/MS methodology holds great promise for accurately quantifying chemical contaminants in foods.


Subject(s)
Mycotoxins , Humans , Mycotoxins/analysis , Chromatography, Liquid/methods , Liquid Chromatography-Mass Spectrometry , Edible Grain/chemistry , Tandem Mass Spectrometry/methods
18.
Front Microbiol ; 15: 1328572, 2024.
Article in English | MEDLINE | ID: mdl-38348193

ABSTRACT

Carbapenem-resistant Escherichia coli (E. coli) strains are widely distributed and spreading rapidly, creating significant challenges for clinical therapeutics. NDM-5, a novel mutant of New Delhi Metallo-ß-Lactamase-1 (NDM-1), exhibits high hydrolase activity toward carbapenems. Since the genetic backgrounds of clinically isolated carbapenem-resistant E. coli are heterogeneous, it is difficult to accurately evaluate the impact of blaNDM-5 on antibiotic resistance. Herein, E. coli BL21 was transformed with a plasmid harboring blaNDM-5, and the resultant strain was named BL21 (pET-28a-blaNDM-5). Consistent with the findings of previous studies, the introduction of exogenous blaNDM-5 resulted in markedly greater resistance of E. coli to multiple ß-lactam antibiotics. Compared with BL21 (pET-28a), BL21 (pET-28a-blaNDM-5) exhibited reduced motility but a significant increase in biofilm formation capacity. Furthermore, transcriptome sequencing was conducted to compare the transcriptional differences between BL21 (pET-28a) and BL21 (pET-28a-blaNDM-5). A total of 461 differentially expressed genes were identified, including those related to antibiotic resistance, such as genes associated with the active efflux system (yddA, mcbR and emrY), pili (csgC, csgF and fimD), biofilm formation (csgD, csgB and ecpR) and antioxidant processes (nuoG). Finally, the pGS21a plasmid harboring blaNDM-5 was transformed into E. coli Rosetta2, after which the expression of the NDM-5 protein was induced using isopropyl-ß-D-thiogalactoside (IPTG). Using glutathione-S-transferase (GST) pull-down assays, total proteins from E. coli were scanned to screen out 82 proteins that potentially interacted with NDM-5. Our findings provide new insight into the identified proteins to identify potential antibiotic targets and design novel inhibitors of carbapenem-resistant bacteria.

19.
Neoplasia ; 50: 100983, 2024 04.
Article in English | MEDLINE | ID: mdl-38417222

ABSTRACT

While BRAF alterations have been established as a driver in various solid malignancies, the characterization of BRAF alterations in prostate cancer (PCa) has not been thoroughly interrogated. By bioinformatics analysis, we first found that BRAF alterations were associated with advanced PCa and exhibited mutually exclusive pattern with ERG alteration across multiple cohorts. Of the most interest, recurrent non-V600 BRAF mutations were found in 3 of 21 (14.3 %) PCa patients demonstrating IDC-P morphology. Furthermore, experimental overexpression of BRAFK601E and BRAFL597R exhibited emergence of oncogenic phenotypes with intensified MAPK signaling in vitro, which could be targeted by MEK inhibitors. Comparison of the incidence of BRAF alterations in IDC-P between western and Chinese ancestry revealed an increased prevalence in the Chinese population. The BRAF mutation may represent important genetic alteration in a subset of IDC-P, highlighting the role of MAPK signaling pathway in this subtype of PCa. To the best of knowledge, this is the first description of non-V600 BRAF mutation in setting of IDC-P, which may in part explain the aggressive phenotype seen in IDC-P and could also bring more treatment options for PCa patients with IDC-P harboring such mutations.


Subject(s)
Carcinoma, Intraductal, Noninfiltrating , Prostatic Neoplasms , Proto-Oncogene Proteins B-raf , Humans , Male , Carcinoma, Intraductal, Noninfiltrating/genetics , Carcinoma, Intraductal, Noninfiltrating/pathology , China , Mutation , Prostate/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins B-raf/genetics
20.
Cell Death Dis ; 15(2): 124, 2024 02 09.
Article in English | MEDLINE | ID: mdl-38336749

ABSTRACT

MYCN amplification is an independent poor prognostic factor in patients with high-risk neuroblastoma (NB). Further exploring the molecular regulatory mechanisms in MYCN-amplified NB will help to develop novel therapy targets. In this study, methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) was identified as the differentially expressed gene (DEG) highly expressed in MYCN-amplified NB, and it showed a positive correlation with MYCN and was associated with a poor prognosis of NB patients. Knockdown of MTHFD1 inhibited proliferation and migration, and induced apoptosis of NB cells in vitro. Mouse model experiments validated the tumorigenic effect of MTHFD1 in NB in vivo. In terms of the mechanism, ChIP-qPCR and dual-luciferase reporter assays demonstrated that MTHFD1 was directly activated by MYCN at the transcriptional level. As an important enzyme in the folic acid metabolism pathway, MTHFD1 maintained the NADPH redox homeostasis in MYCN-amplified NB. Knockdown of MTHFD1 reduced cellular NADPH/NADP+ and GSH/GSSG ratios, increased cellular reactive oxygen species (ROS) and triggered the apoptosis of NB cells. Moreover, genetic knockdown of MTHFD1 or application of the anti-folic acid metabolism drug methotrexate (MTX) potentiated the anti-tumor effect of JQ1 both in vitro and in vivo. Taken together, MTHFD1 as an oncogene is a potential therapeutic target for MYCN-amplified NB. The combination of MTX with JQ1 is of important clinical translational significance for the treatment of patients with MYCN-amplified NB.


Subject(s)
Methylenetetrahydrofolate Dehydrogenase (NADP) , Neuroblastoma , Animals , Humans , Mice , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Homeostasis , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Minor Histocompatibility Antigens/metabolism , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , NADP/metabolism , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Neuroblastoma/metabolism , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL