Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters








Publication year range
1.
Eur J Med Chem ; 277: 116751, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39128328

ABSTRACT

SMARCA2 and SMARCA4 are the mutually exclusive catalytic subunits of the mammalian Switch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex, and have recently been considered as attractive synthetic lethal targets for PROTAC-based cancer therapy. However, the potential off-tissue toxicity towards normal tissues remains a concern. Here, we optimize a GSH-inducible SMARCA2/4-based PROTAC precursor with selective antitumor activity towards lung cancer cells and negligible cytotoxicity towards normal cells in both in vitro and in vivo studies. The precursor is not bioactive or cytotoxic, but preferentially responds to endogenous GSH in GSH-rich lung cancer cells, releasing active PROTAC to degrade SMARCA2/4 via PROTAC-mediated proteasome pathway. Subsequent xenograft model study reveals that selective SMARCA2/4 degradation in lung tumors triggers DNA damage and apoptosis, which significantly inhibits lung cancer cell proliferation without obvious adverse events towards normal tissues. This study exemplifies the targeted degradation of SMARCA2/4 in lung cancer cells by the GSH-responsive PROTAC precursor, highlighting its potential as an encouraging cancer therapeutic strategy.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Glutathione , Lung Neoplasms , Transcription Factors , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Glutathione/metabolism , Transcription Factors/metabolism , Transcription Factors/antagonists & inhibitors , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Animals , Apoptosis/drug effects , Mice , Nuclear Proteins/metabolism , Nuclear Proteins/antagonists & inhibitors , Dose-Response Relationship, Drug , Molecular Structure , Structure-Activity Relationship , Drug Screening Assays, Antitumor , Cell Line, Tumor , DNA Helicases/metabolism , DNA Helicases/antagonists & inhibitors , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Neoplasms, Experimental/metabolism
2.
Angew Chem Int Ed Engl ; : e202413352, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39145675

ABSTRACT

Radiotherapy leverages ionizing radiation to kill cancer cells through direct and indirect effects, and direct effects are considered to play an equal or greater role. Several photosensitizers have been developed to mimic the direct effects of radiotherapy, generating radical cations in DNA models, but none has been applied in cellular studies. Here, we design a radiomimetic photosensitizer, producing DNA radical cations in cells for the first time. To reduce adverse effects, several redox-inducible precursors are prepared as cancer cells have elevated levels of GSH and H2O2. These precursors respond to GSH or H2O2, releasing the active photosensitizer that captures DNA abasic (AP) sites and generates DNA radical cations upon photolysis, without disrupting the redox state of cells. DNA radical cations migrate freely and are eventually trapped by H2O and O2 to yield DNA lesions, thus triggering DNA damage response. Our study suggests that direct effects of radiotherapy suppress cancer cell proliferation mainly by inducing G2/M phase cell cycle arrest, rather than promoting apoptosis. Synergistic effects of the precursor and chemotherapeutic agents are also observed in combination phototherapy. Beyond highlighting an alternative strategy for phototherapy, this proof-of-concept study affords a facile cellular platform to study the direct effects of radiotherapy.

3.
BMC Cancer ; 24(1): 816, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977966

ABSTRACT

Anaplastic thyroid carcinoma (ATC) is a rare but highly aggressive thyroid cancer with poor prognosis. Killing cancer cells by inducing DNA damage or blockage of DNA repair is a promising strategy for chemotherapy. It is reported that aldehyde-reactive alkoxyamines can capture the AP sites, one of the most common DNA lesions, and inhibit apurinic/apyrimidinic endonuclease 1(APE1)-mediated base excision repair (BER), leading to cell death. Whether this strategy can be employed for ATC treatment is rarely investigated. The aim of this study is to exploit GSH-responsive AP site capture reagent (AP probe-net), which responses to the elevated glutathione (GSH) levels in the tumor micro-environment (TME), releasing reactive alkoxyamine to trap AP sites and block the APE1-mediated BER for targeted anti-tumor activity against ATC. In vitro experiments, including MTT andγ-H2AX assays, demonstrate their selective cytotoxicity towards ATC cells over normal thyroid cells. Flow cytometry analysis suggests that AP probe-net arrests the cell cycle in the G2/M phase and induces apoptosis. Western blotting (WB) results show that the expression of apoptotic protein increased with the increased concentration of AP probe-net. Further in vivo experiments reveal that the AP probe-net has a good therapeutic effect on subcutaneous tumors of the ATC cells. In conclusion, taking advantage of the elevated GSH in TME, our study affords a new strategy for targeted chemotherapy of ATC with high selectivity and reduced adverse effects.


Subject(s)
Apoptosis , Glutathione , Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Thyroid Carcinoma, Anaplastic/drug therapy , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Carcinoma, Anaplastic/metabolism , Humans , Glutathione/metabolism , Animals , Mice , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Cell Line, Tumor , Apoptosis/drug effects , Xenograft Model Antitumor Assays , DNA Repair/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA Damage/drug effects , Cell Proliferation/drug effects , Tumor Microenvironment/drug effects
4.
Chem Commun (Camb) ; 59(99): 14705-14708, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37997159

ABSTRACT

Elevated GSH and H2O2 in cancer cells is sometimes doubted due to their contrary reactivities. Here, we construct a dual-responsive fluorescent probe to confirm the conclusion, and employ this to exploit a redox-inducible DNA interstrand crosslink (ICL) precursor. It crosslinks DNA upon activation by GSH and H2O2, affording an alternative dual-responsive strategy.


Subject(s)
DNA Repair , Neoplasms , Hydrogen Peroxide , DNA Damage , DNA/metabolism , Oxidation-Reduction , Cross-Linking Reagents , Neoplasms/genetics
5.
Bioorg Med Chem ; 96: 117526, 2023 12 15.
Article in English | MEDLINE | ID: mdl-38008041

ABSTRACT

ERα (estrogen receptor-α)-targeting PROTACs (PROteolysis TArgeting Chimeras) have emerged as a novel and promising modality for breast cancer therapeutics. However, ERα PROTACs-induced degradation in normal tissues raises concerns about potential off-tissue toxicity. Tumor microenvironment-responsive strategy provides potential for specific control of the PROTAC's on-target degradation activity. The glutathione (GSH) level has been reported to be significantly increased in tumor cells. Here, we designed a GSH-responsive ERα PROTAC, which is generated by conjugating an o-nitrobenzenesulfonyl group to the hydroxyl group of VHL-based ERα PROTAC through a nucleophilic substitution reaction. The o-nitrobenzenesulfonyl group as a protecting group blocks the bioactivity of ERα PROTAC (ER-P1), and that can be specifically recognized and removed by highly abundant GSH in cancer cells. Consequently, the GSH-responsive ERα PROTAC (GSH-ER-P1) exhibits significantly enhanced degradation of ERα in cancer cells compared to that in normal cells, leading to a remarkable inhibition of breast cancer cell proliferation and less toxic effects on normal cells. This study provides a potentially valuable strategy for breast cancer treatment using tumor microenvironment-responsive PROTACs.


Subject(s)
Breast Neoplasms , Estrogen Receptor alpha , Humans , Female , Estrogen Receptor alpha/metabolism , Breast Neoplasms/pathology , Glutathione/metabolism , Proteolysis , Tumor Microenvironment
6.
Oncol Lett ; 26(5): 472, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37809044

ABSTRACT

Numerous agents such as near-infrared dyes that are characterized by specialized cancer imaging and cytotoxicity effects have key roles in cancer diagnosis and therapy via molecularly targeting special biological tissues, organelles and processes. In the present study, a novel fluorescent compound was demonstrated to inhibit cancer cell proliferation in a zebrafish model with slight in vivo toxicity. Further studies demonstrated selective staining of cancer cells and even putative cancer stem cells via accumulation of the dye in the mitochondria of cancer cells, compared with normal cells. Moreover, this compound was also used to image cancer cells in vivo using a zebrafish model. The compound displayed no apparent toxicity to the host animal. Overall, the data indicated that this compound was worthy of further evaluation due to its low toxicity and selective cancer cell imaging and killing effects. It could be a useful tool in cancer research.

7.
Bioorg Chem ; 140: 106793, 2023 11.
Article in English | MEDLINE | ID: mdl-37683536

ABSTRACT

BRD4,as a transcriptional and epigenetic regulator to mediate cellular functions, plays an important role in cancer development.Targeting BRD4 with conventional inhibitors in cancer therapy requires high doses, which often leads to off-target and adverse effects. BRD4-targeted proteolysis-targeting chimeras (PROTACs) can catalytically degrade BRD4 utilizing the endogenous proteasome system, and exhibit promising anti-tumor activity. However, most of the developed PROTACs are non-cancer specific and relatively toxic towards normal cells, limiting their practical applications in cancer treatment. By taking advantage of higher glutathione (GSH) levels in cancer cells than that in normal cells, we developed several GSH-responsive PROTAC precursors 1a-c via the attachment of a GSH-trigger unit on the hydroxyl group of the VHL (von Hippel-Lindau) ligand for the recruitment of E3 ligase. Among the precursors, 1a can be efficiently activated by the innately higher concentrations of GSH in lung cancer cells (A549 and H1299) to release active PROTAC 1, degrading intracellular BRD4 and resulting in cytotoxicity, which is confirmed by mechanistic investigation. On the other hand, 1a cannot be efficiently triggered in normal lung cells (WI38 and HULEC-5a) containing lower levels of GSH, therefore reducing the adverse effects on normal cells. This work provides an alternative proof of concept approach for developing stimuli-responsive PROTAC precursors, and affords a novel insight to improve the selectivity and minimize the adverse effects of current PROTACs, hence enhancing their clinical potential.


Subject(s)
Lung Neoplasms , Nuclear Proteins , Proteolysis Targeting Chimera , Humans , Cell Cycle Proteins , Cell Proliferation , Glutathione , Lung Neoplasms/drug therapy , Transcription Factors
8.
PLoS Biol ; 21(7): e3002189, 2023 07.
Article in English | MEDLINE | ID: mdl-37459330

ABSTRACT

Plant-associated bacteria play important regulatory roles in modulating plant hormone auxin levels, affecting the growth and yields of crops. A conserved auxin degradation (iad) operon was recently identified in the Variovorax genomes, which is responsible for root growth inhibition (RGI) reversion, promoting rhizosphere colonization and root growth. However, the molecular mechanism underlying auxin degradation by Variovorax remains unclear. Here, we systematically screened Variovorax iad operon products and identified 2 proteins, IadK2 and IadD, that directly associate with auxin indole-3-acetic acid (IAA). Further biochemical and structural studies revealed that IadK2 is a highly IAA-specific ATP-binding cassette (ABC) transporter solute-binding protein (SBP), likely involved in IAA uptake. IadD interacts with IadE to form a functional Rieske non-heme dioxygenase, which works in concert with a FMN-type reductase encoded by gene iadC to transform IAA into the biologically inactive 2-oxindole-3-acetic acid (oxIAA), representing a new bacterial pathway for IAA inactivation/degradation. Importantly, incorporation of a minimum set of iadC/D/E genes could enable IAA transformation by Escherichia coli, suggesting a promising strategy for repurposing the iad operon for IAA regulation. Together, our study identifies the key components and underlying mechanisms involved in IAA transformation by Variovorax and brings new insights into the bacterial turnover of plant hormones, which would provide the basis for potential applications in rhizosphere optimization and ecological agriculture.


Subject(s)
Indoleacetic Acids , Rhizosphere , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Plants/metabolism , Bacteria/metabolism , Operon/genetics
9.
Chembiochem ; 24(17): e202300422, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37462478

ABSTRACT

Proteolysis-targeting chimeras (PROTACs) provide a powerful technique to degrade targeted proteins utilizing the cellular ubiquitin-proteasome system. The major concern is the host toxicity resulting from their poor selectivity. Inducible PROTACs responding to exogenous stimulus, such as light, improve their specificity, but it is difficult for photo-activation in deep tissues. Herein, we develop H2 O2 -inducible PROTAC precursors 2/5, which can be activated by endogenous H2 O2 in cancer cells to release the active PROTACs 1/4 to effectively degrade targeted proteins. This results in the intended cytotoxicity towards cancer cells while targeted protein in normal cells remains almost unaffected. The higher Bromodomain-containing protein 4 (BRD4) degradation activity and cytotoxicity of 2 towards cancer cells is mainly due to the higher endogenous concentration of H2 O2 in cancer cells (A549 and H1299), characterized by H2 O2 -responsive fluorescence probe 3. Western blot assays and cytotoxicity experiments demonstrate that 2 degrades BRD4 more effectively and is more cytotoxic in H2 O2 -rich cancer cells than in H2 O2 -deficient normal cells. This method is also extended to estrogen receptor (ER)-PROTAC precursor 5, showing H2 O2 -dependent ER degradation ability. Thus, we establish a novel strategy to induce targeted protein degradation in a H2 O2 -dependent way, which has the potential to improve the selectivity of PROTACs.


Subject(s)
Hydrogen Peroxide , Neoplasms , Proteolysis , Hydrogen Peroxide/pharmacology , Transcription Factors/metabolism , Nuclear Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Receptors, Estrogen/metabolism , Ubiquitin-Protein Ligases/metabolism , Neoplasms/drug therapy
10.
Analyst ; 148(3): 532-538, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36349786

ABSTRACT

Biothiols play essential roles in balancing the redox state and modulating cellular functions. Fluorescent probes for monitoring/labelling biothiols often suffer from slow reaction rates, strong background fluorescence and cytotoxic byproduct release. Thus, developing facile and versatile probes to overcome the challenges is still in high demand. Here, we report four coumarin-maleimides as fast responding and fluorogenic probes to detect GSH or label peptides/proteins. The probes quantitatively and selectively react with GSH via Michael addition within 1-2 min, achieving an 11-196-fold increase in fluorescence quantum yield via blockage of the photoinduced electron transfer (PET) process. Optimized probe 4 is applied for the detection of GSH in vitro (A549 cells) and in vivo (zebrafish embryos). Taking advantage of the fast Michael addition between the maleimide moiety and the sulfhydryl group, we expand the application of our method for fluorescent labelling of peptides/proteins and for tracking their cellular uptake process. The labelling strategy works for both Cys-bearing and Cys-free proteins after the introduction of a sulfhydryl group using Traut's reagent. Fluorescence assay reveals that the TAT-peptide can efficiently enter cells, but H3 protein, part of nucleosomes, prefers to bind on the cell membrane by electrostatic interactions, shedding light on the cellular uptake activity of nucleosomes and affording a potential membrane staining strategy. Overall, our study illustrates the broad potential of coumarin-maleimide based dual-functional probes for GSH detection and versatile protein labelling in biochemical research.


Subject(s)
Nucleosomes , Zebrafish , Animals , Sulfhydryl Compounds , Peptides , Glutathione , Fluorescent Dyes , Coumarins , Cysteine , Homocysteine
11.
Bioorg Chem ; 130: 106270, 2023 01.
Article in English | MEDLINE | ID: mdl-36399864

ABSTRACT

Arylboronic acid/esters and phenyl selenides-based quinone methide (QM) precursors were reported to induce DNA interstrand crosslink (ICL) formation upon reaction with the inherently high concentrations of H2O2 in cancer cells. However, some normal cells (such as macrophages) also contain high-levels of H2O2, which may interfere with precursors' selectivity. In order to enhance the spatiotemporal specificity by the photolysis, we developed photo- and H2O2- dual-responsive DNA ICL precursors 1-3, bearing a photo-responsive coumarin moiety and a H2O2 inducible phenyl selenide group. Precursors 1-3 are efficiently activated by photoirradiation and H2O2 to generate reactive QMs crosslinking DNA. Moreover, the reactivity of precursors can be modulated by the introduction of aromatic substituents (OMe, F), and the electron donating group (OMe) displays a more pronounced promoting effect on DNA ICL formation. A subsequent piperidine heat stability study confirmed that the formed QMs primarily alkylate dAs, dGs and dCs in DNA. Furthermore, 1-3 inhibit lung cancer cell (H1299) growth by inducing DNA damage and producing toxic reactive oxygen species (ROS) upon photolysis of released coumarin. This study illustrates the potent cytotoxicity achieved by novel photo/H2O2 dual-responsive QM precursors 1-3, affording a novel strategy for the development of inducible DNA interstrand cross-linkers.


Subject(s)
Cross-Linking Reagents , Hydrogen Peroxide , Indolequinones , Coumarins/chemistry , DNA Damage/drug effects , Hydrogen Peroxide/pharmacology , Indolequinones/pharmacology , Photolysis , Cross-Linking Reagents/chemistry , Cross-Linking Reagents/pharmacology , Lung Neoplasms/drug therapy , Humans , Cell Line, Tumor
12.
ACS Chem Biol ; 17(4): 797-803, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35297620

ABSTRACT

Abasic (AP) sites are one of the most common DNA lesions in cells. Aldehyde-reactive alkoxyamines capture AP sites and block the activity of APE1, the enzyme responsible for initiating their repair. Blocking the APE1 repair of AP sites leads to cell death, and it is an actively investigated approach for treating cancer. However, unselective AP site capture in different cells produces side effects and limits the application of alkoxyamines in chemotherapy. Herein we take advantage of the higher glutathione (GSH) concentration in cancer cells over normal cells to develop GSH-inducible agents that selectively kill cancer cells. 2,4-Dinitrobenzenesulfonamide caged coumarin-based alkoxyamines 1 and 2 are selectively revealed by GSH to release SO2 and fluorescent coumarin-based alkoxyamines 3 and 4 that trap AP sites in cells. GSH-directed AP site trapping and SO2 release result in selective cytotoxicity (defined as IC50WI38/IC50H1299) against H1299 lung cancer cells over normal WI38 lung cells, ranging from 1.8 to 2.8 for 1 and 2. The alkylating agent methylmethanesulfonate (MMS) promotes the formation of AP sites in cells and enhances the cytotoxicity of agent 1 in a dose-dependent way. Moreover, the comet assay and γH2AX assay suggest that AP adducts form a highly toxic DNA interstrand cross-link (ICL) upon photolysis, leading to further cell death. DNA flow cytometric analysis showed that 1 promoted cell apoptosis in the early stage and induced G2/M phase cell-cycle arrest. The 2,4-dinitrobenzenesulfonamide-caged alkoxyamines exhibited selective antitumor activity and photocytotoxicity in cancer cells, illuminating their potential as GSH-directed chemotherapeutic agents.


Subject(s)
Antineoplastic Agents , DNA Repair , DNA-(Apurinic or Apyrimidinic Site) Lyase , Antineoplastic Agents/pharmacology , Cell Line, Tumor , DNA/metabolism , DNA Damage , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Glutathione , Humans
13.
Chembiochem ; 23(7): e202200086, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35224848

ABSTRACT

DNA interstrand crosslinks (ICLs) are highly toxic DNA lesions, and induce cell death by blocking DNA strand separation. Most ICL agents aiming to kill cancer cells, also generate adverse side effects to normal cells. H2 O2 -inducible DNA ICL agents are highly selective for targeting cancer cells, as the concentration of H2 O2 is higher in cancer cells than normal cells. Previous studies have focused on arylboronate-based precursors, reacting with H2 O2 to generate reactive quinone methides (QMs) crosslinking DNA. Here we explore phenyl selenide-based precursors 1-3 as H2 O2 -inducible DNA ICL agents. The precursors 1-3 can be activated by H2 O2 to generate the good benzylic leaving group and promote production of reactive QMs to crosslink DNA. Moreover, the DNA cross-linking ability is enhanced by the introduction of substituents in the para-position of the phenolic hydroxyl group. From the substituents explored (H, OMe, F), the introduction of electron donating group (OMe) shows a pronounced elevating effect. Further mechanistic studies at the molecular and DNA levels confirm alkylation sites located mainly at dAs, dCs and dGs in DNA. Additionally, cellular experiments reveal that agents 1-3 exhibit higher cytotoxicity toward H1299 human lung cancer cells compared to clinically used drugs, by inducing cellular DNA damage, apoptosis and G0/G1 cell cycle arrest. This study provides a strategy to develop H2 O2 -inducible DNA interstrand cross-linkers.


Subject(s)
DNA , Hydrogen Peroxide , Alkylation , Cross-Linking Reagents/pharmacology , DNA Damage , DNA Repair , Humans
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 261: 120067, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34146827

ABSTRACT

The metal cations, Al3+ and Mg2+, could affect human health and cell biological processes. Their fast and selective detection using one probe remains a challenge. A novel fluorescence probe, N'-((1-hydroxynaphthalen-2-yl)methylene)isoquinoline-3-carbohydrazide (NHMI), was developed for selectively monitoring Al3+ and Mg2+. The probe NHMI showed a distinctive "turn-on" fluorescence signal towards Al3+ and Mg2+ (cyan for Al3+ with 2556-folds enhancement and yellow for Mg2+ with 88-folds enhancement), which is quite distinct from other metal cations and allows for naked-eye detection. This interesting response was attributed to the influence of PET, ESIPT process and CHEF effect, when Al3+ or Mg2+ chelated with NHMI. Furthermore, the fluorescence titration experiments manifested that the detection limit of probe NHMI for Al3+/Mg2+ was as low as 1.20 × 10-8 M and 7.69 × 10-8 M, respectively. The formed complexes NHMI-Al3+ and NHMI-Mg2+ were analyzed by Job's plot, ESI-MS, 1H NMR and FT-IR. The coordination pockets and fluorescence mechanisms of two metal complexes were explored by density functional theory calculation. Moreover, NHMI showed low cytotoxicity and good cell permeability. Fluorescence bioimaging of Al3+/Mg2+ in MCF-7 cells with NHMI indicated its potential application in biological diagnostic analysis.


Subject(s)
Aluminum , Fluorescent Dyes , Humans , MCF-7 Cells , Spectrometry, Fluorescence , Spectroscopy, Fourier Transform Infrared
15.
Chemistry ; 27(16): 5215-5224, 2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33440025

ABSTRACT

Two series of 1,1'-biphenyl analogues with various leaving groups (L=OAc, OCH3 , OCHCH=CH2 , OCH2 Ph, SPh, SePh, and Ph3 P+ ) were synthesized. Their reactivity towards DNA and the reaction mechanism were investigated by determining DNA interstrand cross-link (ICL) efficiency, radical and carbocation formation, and the cross-linking reaction sites. All compounds induced DNA ICL formation upon 350 nm irradiation via a carbocation that was generated from oxidation of the corresponding free radicals. The ICL efficiency and the reaction rate strongly depended on the combined effect of the leaving group and the substituent. Among all compounds tested, the high ICL efficiency (30-43 %) and fast reaction rate were observed with compounds carrying a nitrophenyl group and acetate (2 a), ether (2 b and 2 c), or triphenylphosphonium salt (2 g) as leaving groups. Most compounds with a 4-methoxybenzene group showed similar DNA ICL efficiency (≈30 %) with a slow DNA cross-linking reaction rate. Both cation trapping and free radical trapping adducts were detected in the photo activation process of these compounds, which provided direct evidence for the proposed mechanism. Heat stability study in combination with sequence study suggested that these photo-generated benzyl cations alkylate DNA at dG, dA, and dC sites.


Subject(s)
Biphenyl Compounds , DNA , Cations , Cross-Linking Reagents
16.
Proc Natl Acad Sci U S A ; 117(22): 12080-12086, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32430319

ABSTRACT

Small ribozymes such as Oryza sativa twister spontaneously cleave their own RNA when the ribozyme folds into its active conformation. The coupling between twister folding and self-cleavage has been difficult to study, however, because the active ribozyme rapidly converts to product. Here, we describe the synthesis of a photocaged nucleotide that releases guanosine within microseconds upon photosolvolysis with blue light. Application of this tool to O. sativa twister achieved the spatial (75 µm) and temporal (≤30 ms) control required to resolve folding and self-cleavage events when combined with single-molecule fluorescence detection of the ribozyme folding pathway. Real-time observation of single ribozymes after photo-deprotection showed that the precleaved folded state is unstable and quickly unfolds if the RNA does not react. Kinetic analysis showed that Mg2+ and Mn2+ ions increase ribozyme efficiency by making transitions to the high energy active conformation more probable, rather than by stabilizing the folded ground state or the cleaved product. This tool for light-controlled single RNA folding should offer precise and rapid control of other nucleic acid systems.


Subject(s)
Fluorescence Resonance Energy Transfer , RNA Folding/physiology , RNA, Catalytic/metabolism , Nanotechnology/methods , Oryza/metabolism
17.
Chem Res Toxicol ; 32(10): 2118-2124, 2019 10 21.
Article in English | MEDLINE | ID: mdl-31565933

ABSTRACT

N3-Methyl-2'-deoxyadenosine (MdA) is the major dA methylation product in duplex DNA. MdA blocks DNA replication and undergoes depurination at significantly higher rates than the native nucleotide from which it is derived. Recent reports on the effects of the nucleosome core particle (NCP) environment on the reactivity of N7-methyl-2'-deoxyguanosine (MdG) inspired this investigation concerning the reactivity of MdA in NCPs. NCPs containing MdA at selected positions were produced using a strategy in which the minor groove binding Me-Lex molecule serves as a sequence specific methylating agent. Hydrolysis of the glycosidic bond in MdA to form abasic sites (AP) is suppressed in a NCP. Experiments using histone variants indicate that the proximal, highly basic N-terminal tails are partially responsible for the decreased depurination rate constant. MdA also forms cross-links with histone proteins. The levels of MdA-histone DNA-protein cross-links (DPCMdA) decrease significantly over time and are replaced by those involving AP. The time dependent decrease in DPCMdA is attributed to the reversibility of their formation and the relatively rapid rate of AP formation from MdA. Overall, MdA reactivity in NCPs qualitatively resembles that of MdG.


Subject(s)
Deoxyadenosines/chemistry , Nucleosomes/chemistry , DNA/chemistry , DNA-Binding Proteins/chemistry , Nucleic Acid Conformation
18.
J Am Chem Soc ; 141(26): 10154-10158, 2019 07 03.
Article in English | MEDLINE | ID: mdl-31244168

ABSTRACT

Electron deficient "holes" migrate over long distances through the π-system in free DNA. Hole transfer efficiency (HTE) is strongly dependent on sequence and π-stacking. However, there is no consensus regarding the effects of nucleosome core particle (NCP) environment on hole migration. We quantitatively determined HTE in free DNA and NCPs by independently generating holes at specific positions in DNA. The relative HTE varied widely with respect to position within the NCP and proximity to tyrosine, which suppresses hole transfer. These data indicate that hole transfer in chromatin will be affected by the DNA sequence and its position with respect to histone proteins within NCPs.


Subject(s)
DNA/chemistry , Nucleosomes/chemistry , Electrons , Models, Molecular , Particle Size
19.
J Am Chem Soc ; 140(36): 11308-11316, 2018 09 12.
Article in English | MEDLINE | ID: mdl-30169029

ABSTRACT

Purine radical cations (dA•+ and dG•+) are the primary hole carriers of DNA hole migration due to their favorable oxidation potential. Much less is known about the reactivity of higher energy pyrimidine radical cations. The thymidine radical cation (T•+) was produced at a defined position in DNA from a photochemical precursor for the first time. T•+ initiates hole transfer to dGGG triplets in DNA. Hole localization in a dGGG sequence accounts for ∼26% of T•+ formed under aerobic conditions in 9. Reduction to yield thymidine is also quantified. 5-Formyl-2'-deoxyuridine is formed in low yield in DNA when T•+ is independently generated. This is inconsistent with mechanistic proposals concerning product formation from electron transfer in poly(dA-T) sequences, following hole injection by a photoexcited anthraquinone. Additional evidence that is inconsistent with the original mechanism was obtained using hole injection by a photoexcited anthraquinone in DNA. Instead of requiring the intermediacy of T•+, the strand damage patterns observed in those studies, in which thymidine is oxidized, are reproduced by independent generation of 2'-deoxyadenosin- N6-yl radical (dA•). Tandem lesion formation by dA• provides the basis for an alternative mechanism for thymidine oxidation ascribed to hole migration in poly(dA-T) sequences. Overall, these experiments indicate that the final products formed following DNA hole transfer in poly(dA-T) sequences do not result from deprotonation or hydration of T•+, but rather from deprotonation of the more stable dA•+, to form dA•, which produces tandem lesions in which 5'-flanking thymidines are oxidized.


Subject(s)
Poly dA-dT/chemistry , Base Sequence , DNA Damage , Electron Transport , Sequence Analysis, DNA
20.
J Med Chem ; 61(20): 9132-9145, 2018 10 25.
Article in English | MEDLINE | ID: mdl-30247905

ABSTRACT

We describe several new aromatic nitrogen mustards with various aromatic substituents and boronic esters that can be activated with H2O2 to efficiently cross-link DNA. In vitro studies demonstrated the anticancer potential of these compounds at lower concentrations than those of other clinically used chemotherapeutics, such as melphalan and chlorambucil. In particular, compound 10, bearing an amino acid ester chain, is selectively cytotoxic toward breast cancer and leukemia cells that have inherently high levels of reactive oxygen species. Importantly, 10 was 10-14-fold more efficacious than melphalan and chlorambucil for triple-negative breast-cancer (TNBC) cells. Similarly, 10 is more toxic toward primary chronic-lymphocytic-leukemia cells than either chlorambucil or the lead compound, 9. The introduction of an amino acid side chain improved the solubility and permeability of 10. Furthermore, 10 inhibited the growth of TNBC tumors in xenografted mice without obvious signs of general toxicity, making this compound an ideal drug candidate for clinical development.


Subject(s)
Antineoplastic Agents, Alkylating/metabolism , Antineoplastic Agents, Alkylating/pharmacology , Drug Design , Hydrogen Peroxide/metabolism , Nitrogen Mustard Compounds/metabolism , Nitrogen Mustard Compounds/pharmacology , Antineoplastic Agents, Alkylating/chemistry , Boronic Acids/chemistry , Cell Line, Tumor , Esters/chemistry , Humans , Nitrogen Mustard Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL