Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 320
Filter
1.
ACS Nano ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963059

ABSTRACT

The abuse or misuse of antibiotics in clinical and agricultural settings severely endangers human health and ecosystems, which has raised profound concerns for public health worldwide. Trace detection and reliable discrimination of commonly used fluoroquinolone (FQ) antibiotics and their analogues have consequently become urgent to guide the rational use of antibiotic medicines and deliver efficient treatments for associated diseases. Herein, we report a wearable eye patch integrated with a quadruplex nanosensor chip for noninvasive detection and discrimination of primary FQ antibiotics in tears during routine eyedrop treatment. A set of dual-mode fluorescent nanoprobes of red- or green-emitting CdTe quantum dots integrated with lanthanide ions and a sensitizer, adenosine monophosphate, were constructed to provide an enhanced fluorescence up to 45-fold and nanomolar sensitivity toward major FQs owing to the aggregation-regulated antenna effect. The aggregation-driven, CdTe-Ln(III)-based microfluidic sensor chip is highly specific to FQ antibiotics against other non-FQ counterparts or biomolecular interfering species and is able to accurately discriminate nine types of FQ or non-FQ eyedrop suspensions using linear discriminant analysis. The prototyped wearable sensing detector has proven to be biocompatible and nontoxic to human tissues, which integrates the entire optical imaging modules into a miniaturized, smartphone-based platform for field use and reduces the overall assay time to ∼5 min. The practicability of the wearable eye patch was demonstrated through accurate quantification of antibiotics in a bactericidal event and the continuous profiling of FQ residues in tears after using a typical prescription antibiotic eyedrop. This technology provides a useful supplement to the toolbox for on-site and real-time examination and regulation of inappropriate daily drug use that might potentially lead to long-term antibiotic abuse and has great implications in advancing personal healthcare techniques for the regulation of daily medication therapy.

2.
Aging Clin Exp Res ; 36(1): 140, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965150

ABSTRACT

BACKGROUND: Sarcopenia has been reported to play an important role in frailty syndrome. The serum creatinine/serum cystatin C ratio (Scr/Cys C ratio) has recently been recognized as a valuable indicator for assessing sarcopenia. However, few studies have examined the association between serum creatinine/serum cystatin C ratio and frailty. The objective of this study is to investigate the relationship between the serum creatinine/serum cystatin C ratio and frailty among older adults residing in the community. METHODS AND MATERIALS: A Total of 1926 community-dwelling older adults aged ≥ 60 years in the 2011 waves of the China Health and Retirement Longitudinal Study (CHARLS) were included. The participants' frailty status was determined using a 39 item frailty index (FI), which classified individuals as "robust" (FI ≤ 0.1), "pre-frailty" (0.1 < FI < 0.25), or "frailty" (FI ≥ 0.25). The Scr/Cys C ratio was determined by dividing the serum creatinine level (mg/dL) by the cystatin C level (mg/L). The one-way analysis of variance(ANOVA) and Chi-squared test (χ2)were applied to compare the differences between the 3 groups. Both linear regression and logistic regression models were used to further investigate the relationship between Scr/Cys C ratio and frailty. RESULTS: After adjusting for potential confounding factors, the study revealed that participants in the Q1 quartile of Scr/Cys C ratio had increased odds of frailty (Q1vs.Q4: OR = 1.880, 95% CI 1.126-3.139, p = 0.016) compared with those in the Q4 quartile group. In fully adjusted logistic regression models, male participants in the Q2 quartile of Scr/Cys C ratio were significantly correlated with higher odds of pre-frailty (Q2 vs.Q4: OR = 1.693, 95%CI 1.040-2.758, p = 0.034). However, this correlation was not observed in females (OR = 0.984, 95% CI 0.589-1.642, p = 0.950,). Additionally, the study observed an increase in both the frailty index and the incidence of frailty as age increased in both males and females. CONCLUSION: Among community-dwelling older adults, lower Serum creatinine to cystatin C ratio were found to be associated with increased odds of frailty prevalence in males.


Subject(s)
Creatinine , Cystatin C , Frailty , Independent Living , Humans , Cystatin C/blood , Male , Aged , Creatinine/blood , Female , Frailty/blood , Frailty/epidemiology , Aged, 80 and over , Incidence , Middle Aged , Frail Elderly/statistics & numerical data , China/epidemiology , Longitudinal Studies , Sarcopenia/blood , Sarcopenia/epidemiology , Sex Factors , Biomarkers/blood , Geriatric Assessment/methods
3.
Exp Gerontol ; : 112508, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986855

ABSTRACT

hTERT gene therapies hold significant promise for treating age-related diseases. However, further research is required to address the challenges of delivery and ethical considerations. We hypothesized that exosomes derived from hTERT-immortalized cells could function similarly to hTERT gene therapies by maintaining telomere length and attenuating cellular senescence biomarkers. In this study, we overexpressed the hTERT gene in Human Foreskin Fibroblast-1 cells (HFF cells) to produce hTERT-immortalized HFF cells (hT-HFF cells). We then used exosomes derived from these hT-HFF cells to treat human fibroblasts, HFF cells. Our results demonstrated that these exosomes effectively attenuated biomarkers of cellular senescence in HFF cells. Furthermore, analysis revealed that hTERT mRNA was indeed packaged into the exosomes from hT-HFF cells. This mRNA was capable of elongating telomeres and delaying cellular senescence in HFF cells. Therefore, exosomes from hT-HFF cells show potential as a treatment for age-related diseases.

4.
Cell Rep Med ; : 101621, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38906149

ABSTRACT

Immune checkpoint inhibitors (ICIs) activate anti-cancer immunity by blocking T cell checkpoint molecules such as programmed death 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4). Although ICIs induce some durable responses in various cancer patients, they also have disadvantages, including low response rates, the potential for severe side effects, and high treatment costs. Therefore, selection of patients who can benefit from ICI treatment is critical, and identification of biomarkers is essential to improve the efficiency of ICIs. In this review, we provide updated information on established predictive biomarkers (tumor programmed death-ligand 1 [PD-L1] expression, DNA mismatch repair deficiency, microsatellite instability high, and tumor mutational burden) and potential biomarkers currently under investigation such as tumor-infiltrated and peripheral lymphocytes, gut microbiome, and signaling pathways related to DNA damage and antigen presentation. In particular, this review aims to summarize the current knowledge of biomarkers, discuss issues, and further explore future biomarkers.

5.
Eur J Radiol ; 177: 111586, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38941822

ABSTRACT

OBJECTIVE: To propose a convolutional neural network (EmbNet) for automatic pulmonary embolism detection on computed tomography pulmonary angiogram (CTPA) scans and to assess its diagnostic performance. METHODS: 305 consecutive CTPA scans between January 2019 and December 2021 were enrolled in this study (142 for training, 163 for internal validation), and 250 CTPA scans from a public dataset were used for external validation. The framework comprised a preprocessing step to segment the pulmonary vessels and the EmbNet to detect emboli. Emboli were divided into three location-based subgroups for detailed evaluation: central arteries, lobar branches, and peripheral regions. Ground truth was established by three radiologists. RESULTS: The EmbNet's per-scan level sensitivity, specificity, positive predictive value (PPV), and negative predictive value were 90.9%, 75.4%, 48.4%, and 97.0% (internal validation) and 88.0%, 70.5%, 42.7%, and 95.9% (external validation). At the per-embolus level, the overall sensitivity and PPV of the EmbNet were 86.0% and 61.3% (internal validation), and 83.5% and 57.5% (external validation). The sensitivity and PPV of central emboli were 89.7% and 52.0% (internal validation), and 94.4% and 43.0% (external validation); of lobar emboli were 95.2% and 76.9% (internal validation), and 93.5% and 72.5% (external validation); and of peripheral emboli were 82.6% and 61.7% (internal validation), and 80.2% and 59.4% (external validation). The average false positive rate was 0.45 false emboli per scan (internal validation) and 0.69 false emboli per scan (external validation). CONCLUSION: The EmbNet provides high sensitivity across embolus locations, suggesting its potential utility for initial screening in clinical practice.

6.
Cancer Lett ; 594: 216992, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38797231

ABSTRACT

Intrahepatic cholangiocarcinoma (iCCA) is an aggressive cancer with an extremely poor prognosis, and new treatment options are needed. Recently, immunotherapy has emerged as an efficient treatment against malignant tumors, but less effective in iCCA. Activation of stimulator of interferon genes (STING) signaling could reignite immunologically inert tumors, but the expression and role of STING in iCCA remains to be determined. Here, we show STING is expressed in iCCA, and patients with high expression of STING in early-stage iCCA have a longer overall survival than those have low expression. Increased immune cell infiltration in early-stage iCCA corresponds to elevated STING expression. In mice iCCA models, treatment with the STING agonist MSA-2 show stage-specific inhibitory effects on tumors, with beneficial effects in early-stage tumors but not with advanced-stage cancer. This discrepancy was associated with greater programmed cell death ligand 1 (PD-L1) expression in advanced-stage tumors. Combination therapy targeting PD-L1 and MSA-2 strikingly reduced tumor burden in such tumors compared to either monotherapy. Cumulatively, these data demonstrate that STING agonism monotherapy improves the immune landscape of the tumor microenvironment in early-stage iCCA, while combination therapy ameliorates advanced-stage iCCA.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Membrane Proteins , Cholangiocarcinoma/immunology , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Cholangiocarcinoma/drug therapy , Animals , Membrane Proteins/genetics , Membrane Proteins/metabolism , Membrane Proteins/agonists , Humans , Mice , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/immunology , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/genetics , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Neoplasm Staging , Cell Line, Tumor , Tumor Microenvironment/immunology , Male , Female , Signal Transduction
7.
Mycopathologia ; 189(3): 38, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704795

ABSTRACT

OBJECTIVES: To describe the epidemiology of Pneumocystis jirovecii pneumonia and colonization diagnosed by next-generation sequencing (NGS) and explore the usefulness of the number of P. jirovecii sequence reads for the diagnosis of P. jirovecii pneumonia. METHODS: We examined the NGS results for P. jirovecii in respiratory samples collected from patients and analysed their clinical, radiological and microbiological characteristics. RESULTS: Among 285 respiratory samples collected over a 12-month period (January to December 2022), P. jirovecii sequences were detected in 56 samples from 53 patients. Fifty (94.3%) of the 53 patients were HIV-negative. Following our case definitions, 37 (69.8%) and 16 (30.2%) of the 53 patients had P. jirovecii infection and colonization respectively. P. jirovecii infection was associated with presence of underlying disease with immunosuppression (94.6% vs 18.8%, P < 0.05), positive serum 1,3-ß-D-glucan (41.2% vs 0%, P < 0.01) and higher number of P. jirovecii sequence reads (P < 0.005). In contrast, P. jirovecii colonization was associated with the male sex (93.8% vs 54.1%, P < 0.01), another definitive infectious disease diagnosis of the respiratory tract (43.8% vs 2.7%, P < 0.001) and higher survival (100% vs 67.6%, P < 0.01). Although P. jirovecii pneumonia was associated with higher number of P. jirovecii reads in respiratory samples, only a sensitivity of 82.14% and a specificity of 68.75% could be achieved. CONCLUSION: Detection of P. jirovecii sequences in respiratory samples has to be interpreted discreetly. A combination of clinical, radiological and laboratory findings is still the most crucial in determining whether a particular case is genuine P. jirovecii pneumonia.


Subject(s)
High-Throughput Nucleotide Sequencing , Pneumocystis carinii , Pneumonia, Pneumocystis , Humans , Pneumonia, Pneumocystis/diagnosis , Pneumonia, Pneumocystis/microbiology , Male , Pneumocystis carinii/genetics , Pneumocystis carinii/isolation & purification , Female , Middle Aged , Aged , Adult , Aged, 80 and over , Respiratory System/microbiology , Young Adult , Molecular Diagnostic Techniques/methods
8.
Front Neurosci ; 18: 1368507, 2024.
Article in English | MEDLINE | ID: mdl-38690372

ABSTRACT

Introduction: Peripheral sensory neurons serve as the initial responders to the external environment. How these neurons react to different sensory stimuli, such as mechanical or thermal forces applied to the skin, remains unclear. Methods: Using in vivo two-photon Ca2+ imaging in the lumbar 4 dorsal root ganglion (DRG) of awake Thy1.2-GCaMP6s mice, we assessed neuronal responses to various mechanical (punctate or dynamic) and thermal forces (heat or cold) sequentially applied to the paw plantar surface. Results: Our data indicate that in normal awake male mice, approximately 14 and 38% of DRG neurons respond to either single or multiple modalities of stimulation. Anesthesia substantially reduces the number of responsive neurons but does not alter the ratio of cells exhibiting single-modal responses versus multi-modal responses. Following peripheral nerve injury, DRG cells exhibit a more than 5.1-fold increase in spontaneous neuronal activity and a 1.5-fold increase in sensory stimulus-evoked activity. As neuropathic pain resulting from nerve injury progresses, the polymodal nature of sensory neurons intensifies. The polymodal population increases from 39.1 to 56.9%, while the modality-specific population decreases from 14.7 to 5.0% within a period of 5 days. Discussion: Our study underscores polymodality as a significant characteristic of primary sensory neurons, which becomes more pronounced during the development of neuropathic pain.

9.
Diagn Microbiol Infect Dis ; 109(3): 116332, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692203

ABSTRACT

We report a case of septic arthritis in a 43-year-old female patient. Despite initial treatment with ceftriaxone for Nontyphoidal Salmonella based on blood and joint fluid culture results, the shoulder joint pain worsened. Suspected systemic lupus erythematosus associated synovitis did not respond to immunosuppressive therapy including methylprednisolone, hydroxychloroquine and methotrexate. Subsequent radiograph revealed a shoulder joint abscess, leading to arthroscopic joint debridement. Ceftriaxone was administered post-operatively until analgesic efficacy was attained. This case highlights the significance of accurate diagnosis and appropriate treatment for nontyphoidal Salmonella septic arthritis.


Subject(s)
Anti-Bacterial Agents , Arthritis, Infectious , Lupus Erythematosus, Systemic , Salmonella Infections , Humans , Female , Arthritis, Infectious/microbiology , Arthritis, Infectious/drug therapy , Arthritis, Infectious/diagnosis , Adult , Lupus Erythematosus, Systemic/complications , Salmonella Infections/microbiology , Salmonella Infections/diagnosis , Salmonella Infections/drug therapy , Salmonella Infections/complications , Anti-Bacterial Agents/therapeutic use , Ceftriaxone/therapeutic use , Treatment Outcome , Debridement , Shoulder Joint/microbiology , Shoulder Joint/surgery , Salmonella/isolation & purification
10.
Hepatology ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683582

ABSTRACT

BACKGROUND AND AIMS: HCC, particularly the multifocal HCC, features aggressive invasion and dismal prognosis. Locoregional treatments were often refractory to eliminate tumor tissue, resulting in residual tumor cells persisting and subsequent progression. Owing to problematic delivery to the tumor tissue, systemic therapies, such as lenvatinib (LEN) therapy, show limited clinical benefit in preventing residual tumor progression. Therefore, more advanced strategies for postablative multifocal HCC are urgently needed. APPROACH AND RESULTS: Motivated by the chemotaxis in tumor penetration of macrophages, we report a strategy named microinvasive ablation-guided macrophage hitchhiking for the targeted therapy toward HCC. In this study, the strategy leverages the natural inflammatory gradient induced by ablation to guide LEN-loaded macrophages toward tumor targeting, which increased by ~10-fold the delivery efficiency of LEN in postablative HCC in vivo. Microinvasive ablation-guided macrophage hitchhiking has demonstrated significant antitumor activity in various HCC models, including the hydrodynamic tail vein injection multifocal HCC mouse model and the orthotopic xenograft HCC rabbit model, systematically inhibiting residual tumor progression after ablation and prolonging the median survival of tumor-bearing mice. The potential antitumor mechanism was explored using techniques such as flow cytometry, ELISA, and immunohistochemistry. We found that the strategy significantly suppressed tumor cell proliferation and neovascularization, and such enhanced delivery of LEN stimulated systemic immune responses and induced durable immune memory. CONCLUSIONS: The macrophage hitchhiking strategy demonstrates exceptional therapeutic efficacy and biosafety across various species, offering promising prospects for clinical translation in controlling residual tumor progression and improving outcomes following HCC ablation.

11.
Heliyon ; 10(7): e28921, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38596141

ABSTRACT

Background: Diabetic cardiomyopathy is one common cardiovascular complication without effective treatments. Dihydromyricetin (DHY), a natural dihydroflavonol compound extracted from Ampelopsis grossedentata, possesses versatile pharmacologically important effects. In our current research, we planned to evaluate the impact and probable DHY mechanisms in high glucose (HG)-induced cardiomyocytes. Methods: Primary cardiomyocytes were pretreated with different concentrations of DHY (0, 20, 40, 80, 160, and 320 µM) for various time (0, 1, 2, 4, 12, and 24 h). They were then stimulated for 48 h with 5.5 mmol/L normal glucose (NG) and 33.3 mmol/L high glucose (HG). Cell viability, adenosine-triphosphate (ATP) levels, and lactate dehydrogenase (LDH) release of cardiomyocytes were detected. JC-1 staining was employed to measure the mitochondrial membrane potential. MitoSOX staining and dihydroethidium (DHE) staining were applied to evaluate the oxidative stress levels. TDT mediated dUTP nick end labeling (TUNEL) was used to measure apoptotic levels. Expressions of calcium/calmodulin-dependent protein kinase II (CaMKII), phospholamban (PLB), optic atrophy 1 (OPA1), dynamin-related protein 1 (DRP1), caspase 3, mixed kinase lineage domain like protein (MLKL), receptor interacting protein kinase 3 (RIPK3), and receptor interacting protein kinase 1 (RIPK1) were detected by immunofluorescence and/or Western blot. Results: DHY improved cell viability, enhanced ATP level, and decreased LDH content in HG-stimulated cardiomyocytes, suggesting DHY attenuating cell injury. DHY reduced number of TUNEL positive cells, inhibited RIPK3 and cleaved-caspase 3 expression, implying DHY alleviated necroptosis in HG-stimulated cardiomyocytes. DHY diminished JC-1 monomers, DHE and MitoSOX fluorescence intensity as well as DRP1 expression but increased JC-1 aggregates intensity and OPA1 expression, indicating that DHY attenuated oxidative stress in HG-stimulated cardiomyocytes. DHY also attenuated CaMKII activity by suppressed PLB phosphorylation and inhibited CaMKII oxidation in HG-stimulated cardiomyocytes. Conclusions: HG-induced cardiomyocytes injury was alleviated wherein DHY attenuated necroptosis, repressed ROS production, and inhibited CaMKII oxidation, suggesting that DHY may serve as potential agent to prevent and treat diabetic cardiomyopathy.

12.
Acta Pharmacol Sin ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589688

ABSTRACT

Lymphocyte activation gene 3 (LAG3), an immune checkpoint molecule expressed on activated T cells, functions as a negative regulator of immune responses. Persistent antigen exposure in the tumor microenvironment results in sustained LAG3 expression on T cells, contributing to T cell dysfunction. Fibrinogen-like protein 1 (FGL1) has been identified as a major ligand of LAG3, and FGL1/LAG3 interaction forms a novel immune checkpoint pathway that results in tumor immune evasion. In addition, ubiquitin-specific peptidase 7 (USP7) plays a crucial role in cancer development. In this study we investigated the role of USP7 in modulation of FGL1-mediated liver cancer immune evasion. We showed that knockdown of USP7 or treatment with USP7 inhibitor P5091 suppressed liver cancer growth by promoting CD8+ T cell activity in Hepa1-6 xenograft mice and in HepG2 or Huh7 cells co-cultured with T cells, whereas USP7 overexpression produced the opposite effect. We found that USP7 upregulated FGL1 in HepG2 and Huh7 cells by deubiquitination of transcriptional factor PR domain zinc finger protein 1 (PRDM1), which transcriptionally activated FGL1, and attenuated the CD8+ T cell activity, leading to the liver cancer growth. Interestingly, USP7 could be transcriptionally stimulated by PRDM1 as well in a positive feedback loop. P5091, an inhibitor of USP7, was able to downregulate FGL1 expression, thus enhancing CD8+ T cell activity. In an immunocompetent liver cancer mouse model, the dual blockade of USP7 and LAG3 resulted in a superior antitumor activity compared with anti-LAG3 therapy alone. We conclude that USP7 diminishes CD8+ T cell activity by a USP7/PRDM1 positive feedback loop on FGL1 production in liver cancer; USP7 might be a promising target for liver cancer immunotherapy.

13.
Cell Commun Signal ; 22(1): 212, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566100

ABSTRACT

The pathogenesis of Parkinson's disease (PD) is strongly associated with neuroinflammation, and type I interferons (IFN-I) play a crucial role in regulating immune and inflammatory responses. However, the specific features of IFN in different cell types and the underlying mechanisms of PD have yet to be fully described. In this study, we analyzed the GSE157783 dataset, which includes 39,024 single-cell RNA sequencing results for five PD patients and six healthy controls from the Gene Expression Omnibus database. After cell type annotation, we intersected differentially expressed genes in each cell subcluster with genes collected in The Interferome database to generate an IFN-I-stimulated gene set (ISGs). Based on this gene set, we used the R package AUCell to score each cell, representing the IFN-I activity. Additionally, we performed monocle trajectory analysis, and single-cell regulatory network inference and clustering (SCENIC) to uncover the underlying mechanisms. In silico gene perturbation and subsequent experiments confirm NFATc2 regulation of type I interferon response and neuroinflammation. Our analysis revealed that microglia, endothelial cells, and pericytes exhibited the highest activity of IFN-I. Furthermore, single-cell trajectory detection demonstrated that microglia in the midbrain of PD patients were in a pro-inflammatory activation state, which was validated in the 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model as well. We identified transcription factors NFATc2, which was significantly up-regulated and involved in the expression of ISGs and activation of microglia in PD. In the 1-Methyl-4-phenylpyridinium (MPP+)-induced BV2 cell model, the suppression of NFATc2 resulted in a reduction in IFN-ß levels, impeding the phosphorylation of STAT1, and attenuating the activation of the NF-κB pathway. Furthermore, the downregulation of NFATc2 mitigated the detrimental effects on SH-SY5Y cells co-cultured in conditioned medium. Our study highlights the critical role of microglia in type I interferon responses in PD. Additionally, we identified transcription factors NFATc2 as key regulators of aberrant type I interferon responses and microglial pro-inflammatory activation in PD. These findings provide new insights into the pathogenesis of PD and may have implications for the development of novel therapeutic strategies.


Subject(s)
Interferon Type I , Neuroblastoma , Parkinson Disease , Mice , Animals , Humans , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Neuroinflammatory Diseases , Endothelial Cells/metabolism , NF-kappa B/metabolism , Single-Cell Analysis , Mice, Inbred C57BL
14.
Curr Med Imaging ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38449070

ABSTRACT

BACKGROUND: Some patients with suspected brain metastases (BM) could not tolerate longer scanning examinations according to the standardized MRI protocol. OBJECTIVE: The purpose of this study was to evaluate the clinical value of contrast-enhanced fast fluid-attenuated inversion recovery (CE FLAIR) imaging in combination with contrast-enhanced T1 weighted imaging (CE T1WI) in detecting BM of lung cancer and explore a quick and effective MRI protocol. MATERIAL AND METHODS: In 201 patients with lung cancers and suspected BM, T1WI and FLAIR were performed before and after administration of gadopentetate dimeglumine. Two radiologists reviewed pre- and post-contrast images to determine the presence of abnormal contrast enhancement or signal intensity and decided whether it was metastatic or not on CE T1WI (Group 1) and CE FLAIR (Group 2). The number, locations and features of abnormal findings in two groups were recorded. Receiver Operating Characteristic (ROC) analyses were conducted in three groups: Group 1, 2 and 3(combination of CE FLAIR and CE T1WI). RESULTS: A total of 714 abnormal findings were revealed, of which 672 were considered as BM and 42 nonmetastatic. Superficial and small metastases(≤10mm) in parenchyma and ependyma, leptomeningeal and non-expansive skull metastases were typically better seen on CE FLAIR. The areas under ROC in the three groups were 0.720,0.887 and 0.973, respectively. Group 3 was significantly better in diagnostic efficiency of BMs than Group 1 (p<0.0001) or Group 2 (p=0.0006). CONCLUSION: The combination of CE T1WI and CE FLAIR promotes diagnostic performance and results in better observation and characterization of BM in patients with lung cancers. It provides a quick and efficient way of detecting BM.

15.
Antibiotics (Basel) ; 13(3)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38534697

ABSTRACT

The rebound characteristics of respiratory infections after lifting pandemic control measures were uncertain. From January to November 2023, patients presenting at a teaching hospital were tested for common respiratory viruses and Mycoplasma pneumoniae using a combination of antigen, nucleic acid amplification, and targeted next-generation sequencing (tNGS) tests. The number and rate of positive tests per month, clinical and microbiological characteristics were analyzed. A rapid rebound of SARS-CoV-2 was followed by a slower rebound of M. pneumoniae, with an interval of 5 months between their peaks. The hospitalization rate was higher, with infections caused by respiratory viruses compared to M. pneumoniae. Though the pediatric hospitalization rate of respiratory viruses (66.1%) was higher than that of M. pneumoniae (34.0%), the 4094 cases of M. pneumoniae within 6 months posed a huge burden on healthcare services. Multivariate analysis revealed that M. pneumoniae-infected adults had more fatigue, comorbidities, and higher serum C-reactive protein, whereas children had a higher incidence of other respiratory pathogens detected by tNGS or pathogen-specific PCR, fever, and were more likely to be female. A total of 85% of M. pneumoniae-positive specimens had mutations detected at the 23rRNA gene, with 99.7% showing A2063G mutation. Days to defervescence were longer in those not treated by effective antibiotics and those requiring a change in antibiotic treatment. A delayed but significant rebound of M. pneumoniae was observed after the complete relaxation of pandemic control measures. No unusual, unexplained, or unresponsive cases of respiratory infections which warrant further investigation were identified.

16.
Heliyon ; 10(6): e28068, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38533059

ABSTRACT

In response to the problem of excessive power consumption during the furrowing operation of orchard furrowing fertilizer machines, an optimization experiment of furrowing operation parameters for orchard furrowing fertilizer machine was conducted based on discrete element simulations. This research focused on the impact of furrowing device operation parameters on furrowing power consumption under full machine operating conditions. Firstly, a kinematics analysis of the soil granules during cutting was done. The mathematical model of soil granules through three movement processes of rising, detachment, and falling was established to determine the main factors affecting the power consumption of furrowing. Secondly, in assessing the furrowing power consumption, the stability coefficient of the furrowing depth, and the percentage of soil cover, alongside the key parameters of furrowing depth, forward propulsion velocity, and furrowing blade rotation speed, a comprehensive quadratic orthogonal rotation regression experiment was meticulously conducted. It was established that test metrics and test parameters regress. Finally, the test parameters were comprehensively optimized after analyzing each factor's impact on the test metrics. The orchard furrowing fertilizer machine's optimal operating parameters were determined, and the verification test was performed. According to the field test findings, the forward propulsion velocity was 785 m/h, and the furrowing blade rotation speed was 190 r/min when the furrowing depth was 275 mm. At this point, the furrowing power consumption was 2.39 kW, the soil cover percentage was 69.06%, and the furrowing depth stability coefficient was 95.08%. These results were in line with the requirements of orchard furrowing operation. The findings of the study can be utilized as a guide for structural changes to orchard furrowing equipment and the management of furrowing operation parameters.

17.
Comput Biol Med ; 170: 108075, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301514

ABSTRACT

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by difficulties in social communication and repetitive and stereotyped behaviors. According to the World Health Organization, about 1 in 100 children worldwide has autism. With the global prevalence of ASD, timely and accurate diagnosis has been essential in enhancing the intervention effectiveness for ASD children. Traditional ASD diagnostic methods rely on clinical observations and behavioral assessment, with the disadvantages of time-consuming and lack of objective biological indicators. Therefore, automated diagnostic methods based on machine learning and deep learning technologies have emerged and become significant since they can achieve more objective, efficient, and accurate ASD diagnosis. Electroencephalography (EEG) is an electrophysiological monitoring method that records changes in brain spontaneous potential activity, which is of great significance for identifying ASD children. By analyzing EEG data, it is possible to detect abnormal synchronous neuronal activity of ASD children. This paper gives a comprehensive review of the EEG-based ASD identification using traditional machine learning methods and deep learning approaches, including their merits and potential pitfalls. Additionally, it highlights the challenges and the opportunities ahead in search of more effective and efficient methods to automatically diagnose autism based on EEG signals, which aims to facilitate automated ASD identification.


Subject(s)
Autism Spectrum Disorder , Child , Humans , Autism Spectrum Disorder/diagnosis , Brain , Electroencephalography/methods , Prevalence , Machine Learning
18.
PLoS One ; 19(1): e0297260, 2024.
Article in English | MEDLINE | ID: mdl-38227591

ABSTRACT

BACKGROUND: The triple negative breast cancer (TNBC) is the most malignant subtype of breast cancer with high aggressiveness. Although paclitaxel-based chemotherapy scenario present the mainstay in TNBC treatment, paclitaxel resistance is still a striking obstacle for cancer cure. So it is imperative to probe new therapeutic targets through illustrating the mechanisms underlying paclitaxel chemoresistance. METHODS: The Single cell RNA sequencing (scRNA-seq) data of TNBC cells treated with paclitaxel at different points were downloaded from the Gene Expression Omnibus (GEO) database. The Seurat R package was used to filter and integrate the scRNA-seq expression matrix. Cells were further clustered by the FindClusters function, and the gene marker of each subset was defined by FindAllMarkers function. Then, the hallmark score of each cell was calculated by AUCell R package, the biological function of the highly expressed interest genes was analyzed by the DAVID database. Subsequently, we performed pseudotime analysis to explore the change patterns of drug resistance genes and SCENIC analysis to identify the key transcription factors (TFs). Finally, the inhibitors of which were also analyzed by the CTD database. RESULTS: We finally obtained 6 cell subsets from 2798 cells, which were marked as AKR1C3+, WNT7A+, FAM72B+, RERG+, IDO1+ and HEY1+HCC1143 cell subsets, among which the AKR1C3+, IDO1+ and HEY1+ cell subsets proportions increased with increasing treatment time, and then were regarded as paclitaxel resistance subsets. Hallmark score and pseudotime analysis showed that these paclitaxel resistance subsets were associated with the inflammatory response, virus and interferon response activation. In addition, the gene regulatory networks (GRNs) indicated that 3 key TFs (STAT1, CEBPB and IRF7) played vital role in promoting resistance development, and five common inhibitors targeted these TFs as potential combination therapies of paclitaxel were identified. CONCLUSION: In this study, we identified 3 paclitaxel resistance relevant IFs and their inhibitors, which offers essential molecular basis for paclitaxel resistance and beneficial guidance for the combination of paclitaxel in clinical TNBC therapy.


Subject(s)
Paclitaxel , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Single-Cell Gene Expression Analysis , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor
19.
J Neuroinflammation ; 21(1): 13, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191407

ABSTRACT

Ferroptosis is an iron-dependent cell death mechanism involving the accumulation of lipid peroxides. As a critical regulator, glutathione peroxidase 4 (GPX4) has been demonstrated to be downregulated in epilepsy. However, the mechanism of ferroptosis in epilepsy remains unclear. In this study, bioinformatics analysis, analysis of epilepsy patient blood samples and cell and mouse experiments revealed strong associations among epilepsy, ferroptosis, microRNA-211-5p and purinergic receptor P2X 7 (P2RX7). P2RX7 is a nonselective ligand-gated homotrimeric cation channel, and its activation mainly increases neuronal activity during epileptic seizures. In our study, the upregulation of P2RX7 in epilepsy was attributed to the downregulation of microRNA (miR)-211-5p. Furthermore, P2RX7 has been found to regulate GPX4/HO-1 by alleviating lipid peroxidation induced by suppression of the MAPK/ERK signaling pathway in murine models. The dynamic decrease in miR-211-5p expression induces hypersynchronization and both nonconvulsive and convulsive seizures, and forebrain miR-211-5p suppression exacerbates long-lasting pentylenetetrazole-induced seizures. Additionally, in this study, induction of miR-211-5p expression or genetic-silencing of P2RX7 significantly reduced the seizure score and duration in murine models through the abovementioned pathways. These results suggest that the miR-211-5p/P2RX7 axis is a novel target for suppressing both ferroptosis and epilepsy.


Subject(s)
Epilepsy , Ferroptosis , MicroRNAs , Humans , Animals , Mice , Epilepsy/genetics , Oxidative Stress , Seizures , MicroRNAs/genetics , Receptors, Purinergic P2X7/genetics
20.
Front Plant Sci ; 14: 1271933, 2023.
Article in English | MEDLINE | ID: mdl-38093993

ABSTRACT

Introduction: At present, machine learning and image processing technology are widely used in plant disease diagnosis. In order to address the challenges of subjectivity, cost, and timeliness associated with traditional methods of diagnosing potassium deficiency in apple tree leaves. Methods: The study proposes a model that utilizes image processing technology and machine learning techniques to enhance the accuracy of detection during each growth period. Leaf images were collected at different growth stages and processed through denoising and segmentation. Color and shape features of the leaves were extracted and a multiple regression analysis model was used to screen for key features. Linear discriminant analysis was then employed to optimize the data and obtain the optimal shape and color feature factors of apple tree leaves during each growth period. Various machine-learning methods, including SVM, DT, and KNN, were used for the diagnosis of potassium deficiency. Results: The MLR-LDA-SVM model was found to be the optimal model based on comprehensive evaluation indicators. Field experiments were conducted to verify the accuracy of the diagnostic model, achieving high diagnostic accuracy during different growth periods. Discussion: The model can accurately diagnose whether potassium deficiency exists in apple tree leaves during each growth period. This provides theoretical guidance for intelligent and precise water and fertilizer management in orchards.

SELECTION OF CITATIONS
SEARCH DETAIL