Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Can J Cardiol ; 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39245340

ABSTRACT

BACKGROUND: Optical flow ratio (OFR) is a novel computational fractional flow reserve derived from optical coherence tomography (OCT). However, the impact of combining post-stenting morphology (OCT) and physiology (OFR) remains largely unknown. METHODS: OCT and OFR were analysed at an independent core laboratory. Target lesion failure (TLF) was defined as the composite of cardiac death, target lesion myocardial infarction, and target lesion revascularisation. Suboptimal stent deployment was identified with at least 1 TLF-related OCT or OFR characteristic. RESULTS: A total of 448 patients with acute coronary syndrome (459 vessels) were assessed. Stent expansion < 80%, minimal stent area < 4.5 mm2, stent edge lipid-rich plaque and OFR < 0.90 were independent predictors of TLF (all P < 0.001). Patients with OCT-suboptimal (adjusted hazard ratio [aHR] 7.88, 95% CI 2.73-22.72,-P < 0.001) or OFR-suboptimal (aHR 5.78, 95% CI 2.54-13.14; P < 0.001) stent deployment showed significantly higher risk of TLF compared with those with optimal stent deployment, with a significant interaction (Pinteraction < 0.001). OCT and OFR both-suboptimal stent deployment was confirmed as an independent predictor of TLF (aHR 9.39, 95% CI 4.25-20.76; P < 0.001). CONCLUSIONS: Combined OCT and OFR conferred an optimal reclassification of stent deployment, which may aid in decision making regarding a tailored PCI strategy for optimal stent deployment.

2.
Biomolecules ; 14(9)2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39334954

ABSTRACT

This study identified a salt-tolerant GH11 xylanase, Xynst, which was isolated from a soil bacterium Bacillus sp. SC1 and can resist as high as 4 M NaCl. After rational design and high-throughput screening of site-directed mutant libraries, a double mutant W6F/Q7H with a 244% increase in catalytic activity and a 10 °C increment in optimal temperature was obtained. Both Xynst and W6F/Q7H xylanases were stimulated by high concentrations of salts. In particular, the activity of W6F/Q7H was more than eight times that of Xynst in the presence of 2 M NaCl at 65 °C. Kinetic parameters indicated they have the highest affinity for beechwood xylan (Km = 0.30 mg mL-1 for Xynst and 0.18 mg mL-1 for W6F/Q7H), and W6F/Q7H has very high catalytic efficiency (Kcat/Km = 15483.33 mL mg-1 s-1). Molecular dynamic simulation suggested that W6F/Q7H has a more compact overall structure, improved rigidity of the active pocket edge, and a flexible upper-end alpha helix. Hydrolysis of different xylans by W6F/Q7H released more xylooligosaccharides and yielded higher proportions of xylobiose and xylotriose than Xynst did. The conversion efficiencies of Xynst and W6F/Q7H on all tested xylans exceeded 20%, suggesting potential applications in the agricultural and food industries.


Subject(s)
Bacillus , Endo-1,4-beta Xylanases , Glucuronates , Oligosaccharides , Protein Engineering , Oligosaccharides/metabolism , Oligosaccharides/chemistry , Glucuronates/metabolism , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/metabolism , Endo-1,4-beta Xylanases/chemistry , Bacillus/enzymology , Bacillus/genetics , Protein Engineering/methods , Molecular Dynamics Simulation , Sodium Chloride/pharmacology , Kinetics , Xylans/metabolism , Mutagenesis, Site-Directed , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Hydrolysis , Disaccharides
3.
Protist ; 175(5): 126059, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39208765

ABSTRACT

Prostomateans, as common inhabitants in diverse aquatic environments, are among the simplest ciliate lineages, and serve as trophic links in food webs. However, only a few members are well-known and thoroughly studied, and the diversity of this group remains elusive. The unique genus Plagiocampa has a long history of research, but few studies have been performed using up-to-date methods. In the present work, Plagiocampa longis Kahl, 1927 and Plagiocampa minima Kahl, 1927, collected from Chinese coastal habitats, were investigated based on microscopical observation, protargol staining, and SSU rRNA gene sequencing. Their ciliature and morphometric data as well as gene sequences are documented. Phylogenetic analyses revealed that the family Plagiocampidae is likely monophyletic and has a closer relationship with parasitic Cryptocaryon.


Subject(s)
Ciliophora , Phylogeny , Ciliophora/classification , Ciliophora/genetics , Ciliophora/cytology , Ciliophora/isolation & purification , China , RNA, Ribosomal, 18S/genetics , DNA, Ribosomal/genetics , DNA, Protozoan/genetics , Sequence Analysis, DNA
4.
Technol Cancer Res Treat ; 23: 15330338241272051, 2024.
Article in English | MEDLINE | ID: mdl-39113534

ABSTRACT

Head and neck malignancies are a significant global health concern, with head and neck squamous cell carcinoma (HNSCC) being the sixth most common cancer worldwide accounting for > 90% of cases. In recent years, there has been growing recognition of the potential role of alternative splicing (AS) in the etiology of cancer. Increasing evidence suggests that AS is associated with various aspects of cancer progression, including tumor occurrence, invasion, metastasis, and drug resistance. Additionally, AS is involved in shaping the tumor microenvironment, which plays a crucial role in tumor development and response to therapy. AS can influence the expression of factors involved in angiogenesis, immune response, and extracellular matrix remodeling, all of which contribute to the formation of a supportive microenvironment for tumor growth. Exploring the mechanism of AS events in HNSCC could provide insights into the development and progression of this cancer, as well as its interaction with the tumor microenvironment. Understanding how AS contributes to the molecular changes in HNSCC cells and influences the tumor microenvironment could lead to the identification of new therapeutic targets. Targeted chemotherapy and immunotherapy strategies tailored to the specific AS patterns in HNSCC could potentially improve treatment outcomes and reduce side effects. This review explores the concept, types, processes, and technological advancements of AS, focusing on its role in the initiation, progression, treatment, and prognosis of HNSCC.


Subject(s)
Alternative Splicing , Squamous Cell Carcinoma of Head and Neck , Tumor Microenvironment , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Tumor Microenvironment/genetics , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Biomarkers, Tumor/genetics
6.
BMC Ophthalmol ; 24(1): 262, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898418

ABSTRACT

BACKGROUND: Dry eye is a chronic and multifactorial ocular surface disease caused by tear film instability or imbalance in the microenvironment of the ocular surface. It can lead to various discomforts such as inflammation of the ocular surface and visual issues. However, the mechanism of dry eye is not clear, which results in dry eye being only relieved but not cured in clinical practice. Finding multiple environmental pathways for dry eye and exploring the pathogenesis of dry eye have become the focus of research. Studies have found that changes in microbiota may be related to the occurrence and development of dry eye disease. METHODS: Entered the keywords "Dry eye", "Microbiota", "Bacteria" through PUBMED, summarised the articles that meet the inclusion criteria and then filtered them while the publication time range of the literature was defined in the past 5 years, with a deadline of 2023.A total of 13 clinical and 1 animal-related research articles were screened out and included in the summary. RESULTS: Study found that different components of bacteria can induce ocular immune responses through different receptors present on the ocular surface, thereby leading to an imbalance in the ocular surface microenvironment. Changes in the ocular surface microbiota and gut microbiota were also found when dry eye syndrome occurs, including changes in diversity, an increase in pro-inflammatory bacteria, and a decrease in short-chain fatty acid-related bacterial genera that produce anti-inflammatory effects. Fecal microbiota transplantation or probiotic intervention can alleviate signs of inflammation on the ocular surface of dry eye animal models. CONCLUSIONS: By summarizing the changes in the ocular surface and intestinal microbiota when dry eye occurs, it is speculated and concluded that the intestine may affect the occurrence of eye diseases such as dry eye through several pathways and mechanisms, such as the occurrence of abnormal immune responses, microbiota metabolites- intervention of short-chain fatty acids, imbalance of pro-inflammatory and anti-inflammatory factors, and release of neurotransmitters, etc. Analyzing the correlation between the intestinal tract and the eyes from the perspective of microbiota can provide a theoretical basis and a new idea for relieving dry eyes in multiple ways in the future.


Subject(s)
Dry Eye Syndromes , Gastrointestinal Microbiome , Dry Eye Syndromes/metabolism , Dry Eye Syndromes/microbiology , Humans , Gastrointestinal Microbiome/physiology , Animals , Tears/metabolism
7.
Int J Biol Sci ; 20(7): 2640-2657, 2024.
Article in English | MEDLINE | ID: mdl-38725843

ABSTRACT

Esophageal carcinoma is amongst the prevalent malignancies worldwide, characterized by unclear molecular classifications and varying clinical outcomes. The PI3K/AKT/mTOR signaling, one of the frequently perturbed dysregulated pathways in human malignancies, has instigated the development of various inhibitory agents targeting this pathway, but many ESCC patients exhibit intrinsic or adaptive resistance to these inhibitors. Here, we aim to explore the reasons for the insensitivity of ESCC patients to mTOR inhibitors. We assessed the sensitivity to rapamycin in various ESCC cell lines by determining their respective IC50 values and found that cells with a low level of HMGA1 were more tolerant to rapamycin. Subsequent experiments have supported this finding. Through a transcriptome sequencing, we identified a crucial downstream effector of HMGA1, FKBP12, and found that FKBP12 was necessary for HMGA1-induced cell sensitivity to rapamycin. HMGA1 interacted with ETS1, and facilitated the transcription of FKBP12. Finally, we validated this regulatory axis in in vivo experiments, where HMGA1 deficiency in transplanted tumors rendered them resistance to rapamycin. Therefore, we speculate that mTOR inhibitor therapy for individuals exhibiting a reduced level of HMGA1 or FKBP12 may not work. Conversely, individuals exhibiting an elevated level of HMGA1 or FKBP12 are more suitable candidates for mTOR inhibitor treatment.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , HMGA1a Protein , MTOR Inhibitors , Proto-Oncogene Protein c-ets-1 , Tacrolimus Binding Protein 1A , Animals , Humans , Mice , Cell Line, Tumor , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , HMGA1a Protein/metabolism , HMGA1a Protein/genetics , Mice, Nude , MTOR Inhibitors/pharmacology , MTOR Inhibitors/therapeutic use , Proto-Oncogene Protein c-ets-1/metabolism , Proto-Oncogene Protein c-ets-1/genetics , Signal Transduction/drug effects , Sirolimus/pharmacology , Sirolimus/therapeutic use , Tacrolimus Binding Protein 1A/metabolism , Tacrolimus Binding Protein 1A/genetics , TOR Serine-Threonine Kinases/metabolism
8.
World J Gastrointest Oncol ; 16(3): 1046-1058, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38577462

ABSTRACT

BACKGROUND: Gastric cancer (GC) is the fifth most commonly diagnosed malignancy worldwide, with over 1 million new cases per year, and the third leading cause of cancer-related death. AIM: To determine the optimal perioperative treatment regimen for patients with locally resectable GC. METHODS: A comprehensive literature search was conducted, focusing on phase II/III randomized controlled trials (RCTs) assessing perioperative chemotherapy and chemoradiotherapy in treating locally resectable GC. The R0 resection rate, overall survival (OS), disease-free survival (DFS), and incidence of grade 3 or higher nonsurgical severe adverse events (SAEs) associated with various perioperative regimens were analyzed. A Bayesian network meta-analysis was performed to compare treatment regimens and rank their efficacy. RESULTS: Thirty RCTs involving 8346 patients were included in this study. Neoadjuvant XELOX plus neoadjuvant radiotherapy and neoadjuvant CF were found to significantly improve the R0 resection rate compared with surgery alone, and the former had the highest probability of being the most effective option in this context. Neoadjuvant plus adjuvant FLOT was associated with the highest probability of being the best regimen for improving OS. Owing to limited data, no definitive ranking could be determined for DFS. Considering nonsurgical SAEs, FLO has emerged as the safest treatment regimen. CONCLUSION: This study provides valuable insights for clinicians when selecting perioperative treatment regimens for patients with locally resectable GC. Further studies are required to validate these findings.

9.
J Cardiothorac Surg ; 19(1): 251, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643125

ABSTRACT

BACKGROUND: Sinus of Valsalva aneurysm (SVA) is a rare cardiac anomaly which can be congenital or acquired. Patients with SVA are commonly asymptomatic when the occupying effect of SVA is insignificant, while ruptured SVA usually causes severe symptoms including heart failure and myocardial ischemia. CASE PRESENTATION: We present an unusual case of a 64-year-old female manifesting with exertional dyspnea as well as angina pectoris for three months. Echocardiography and cardiac computed tomographic angiography confirmed unruptured left-coronary and non-coronary SVAs. The left anterior descending artery and left circumflex artery were stretched and compressed by the SVA which causing myocardial ischemia. The patient finally received aortic root replacement (Bentall procedure) and got symptom relieved. CONCLUSIONS: Giant unruptured SVA originating from left coronary sinus is extremely rare. Our case highlights that giant SVA should be considered in cases with angina pectoris. Echocardiography and coronary computed tomographic angiography are useful and important for diagnosis. Surgery is highly recommended in patients with SVA.


Subject(s)
Aortic Aneurysm , Sinus of Valsalva , Female , Humans , Middle Aged , Sinus of Valsalva/diagnostic imaging , Sinus of Valsalva/surgery , Aortic Aneurysm/complications , Aortic Aneurysm/diagnostic imaging , Aortic Aneurysm/surgery , Echocardiography , Tomography, X-Ray Computed , Angina Pectoris/etiology , Angina Pectoris/surgery
10.
World J Gastrointest Oncol ; 16(2): 300-313, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38425402

ABSTRACT

MicroRNAs (miRNAs) have received much attention in the past decade as potential key epigenomic regulators of tumors and cancer stem cells (CSCs). The abnormal expression of miRNAs is responsible for different phenotypes of gastric cancer stem cells (GCSCs). Some specific miRNAs could be used as promising biomarkers and therapeutic targets for the identification of GCSCs. This review summarizes the coding process and biological functions of miRNAs and demonstrates their role and efficacy in gastric cancer (GC) metastasis, drug resistance, and apoptosis, especially in the regulatory mechanism of GCSCs. It shows that the overexpression of onco-miRNAs and silencing of tumor-suppressor miRNAs can play a role in promoting or inhibiting tumor metastasis, apart from the initial formation of GC. It also discusses the epigenetic regulation and potential clinical applications of miRNAs as well as the role of CSCs in the pathogenesis of GC. We believe that this review may help in designing novel therapeutic approaches for GC.

11.
Discov Oncol ; 15(1): 31, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38324023

ABSTRACT

Cancer has become one of the most important causes of human death. In particular, the 5 year survival rate of patients with digestive tract cancer is low. Although chemotherapy drugs have a certain efficacy, they are highly toxic and prone to chemotherapy resistance. With the advancement of antitumor research, many natural drugs have gradually entered basic clinical research. They have low toxicity, few adverse reactions, and play an important synergistic role in the combined targeted therapy of radiotherapy and chemotherapy. A large number of studies have shown that the active components of Paris polyphylla (PPA), a common natural medicinal plant, can play an antitumor role in a variety of digestive tract cancers. In this paper, the main components of PPA such as polyphyllin, C21 steroids, sterols, and flavonoids, amongst others, are introduced, and the mechanisms of action and research progress of PPA and its active components in the treatment of various digestive tract cancers are reviewed and summarized. The main components of PPA have been thoroughly explored to provide more detailed references and innovative ideas for the further development and utilization of similar natural antitumor drugs.

12.
Cell Death Dis ; 15(2): 158, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383528

ABSTRACT

Chemotherapy is a primary treatment for esophageal squamous cell carcinoma (ESCC). Resistance to chemotherapeutic drugs is an important hurdle to effective treatment. Understanding the mechanisms underlying chemotherapy resistance in ESCC is an unmet medical need to improve the survival of ESCC. Herein, we demonstrate that ferroptosis triggered by inhibiting high mobility group AT-hook 1 (HMGA1) may provide a novel opportunity to gain an effective therapeutic strategy against chemoresistance in ESCC. HMGA1 is upregulated in ESCC and works as a key driver for cisplatin (DDP) resistance in ESCC by repressing ferroptosis. Inhibition of HMGA1 enhances the sensitivity of ESCC to ferroptosis. With a transcriptome analysis and following-up assays, we demonstrated that HMGA1 upregulates the expression of solute carrier family 7 member 11 (SLC7A11), a key transporter maintaining intracellular glutathione homeostasis and inhibiting the accumulation of malondialdehyde (MDA), thereby suppressing cell ferroptosis. HMGA1 acts as a chromatin remodeling factor promoting the binding of activating transcription factor 4 (ATF4) to the promoter of SLC7A11, and hence enhancing the transcription of SLC7A11 and maintaining the redox balance. We characterized that the enhanced chemosensitivity of ESCC is primarily attributed to the increased susceptibility of ferroptosis resulting from the depletion of HMGA1. Moreover, we utilized syngeneic allograft tumor models and genetically engineered mice of HMGA1 to induce ESCC and validated that depletion of HMGA1 promotes ferroptosis and restores the sensitivity of ESCC to DDP, and hence enhances the therapeutic efficacy. Our finding uncovers a critical role of HMGA1 in the repression of ferroptosis and thus in the establishment of DDP resistance in ESCC, highlighting HMGA1-based rewiring strategies as potential approaches to overcome ESCC chemotherapy resistance. Schematic depicting that HMGA1 maintains intracellular redox homeostasis against ferroptosis by assisting ATF4 to activate SLC7A11 transcription, resulting in ESCC resistance to chemotherapy.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Ferroptosis , Animals , Mice , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , HMGA1a Protein/genetics , Drug Resistance, Neoplasm/genetics , Ferroptosis/genetics , HMGA1b Protein , Cell Line, Tumor
13.
Comput Methods Programs Biomed ; 244: 107988, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38171168

ABSTRACT

BACKGROUND AND OBJECTIVE: Recruitment maneuvers with subsequent positive-end-expiratory-pressure (PEEP) have proven effective in recruiting lung volume and preventing alveoli collapse. However, determining a safe, effective, and patient-specific PEEP is not standardized, and this more optimal PEEP level evolves with patient condition, requiring personalised monitoring and care approaches to maintain optimal ventilation settings. METHODS: This research examines 3 physiologically relevant basis function sets (exponential, parabolic, cumulative) to enable better prediction of elastance evolution for a virtual patient or digital twin model of MV lung mechanics, including novel elements to model and predict distension elastance. Prediction accuracy and robustness are validated against recruitment maneuver data from 18 volume-controlled ventilation (VCV) patients at 7 different baseline PEEP levels (0 to 12 cmH2O) and 14 pressure-controlled ventilation (PCV) patients at 4 different baseline PEEP levels (6 to 12 cmH2O), yielding 623 and 294 prediction cases, respectively. Predictions were made up to 12 cmH2O of added PEEP ahead, covering 6 × 2 cmH2O PEEP steps. RESULTS: The 3 basis function sets yield median absolute peak inspiratory pressure (PIP) prediction error of 1.63 cmH2O for VCV patients, and median peak inspiratory volume (PIV) prediction error of 0.028 L for PCV patients. The exponential basis function set yields a better trade-off of overall performance across VCV and PCV prediction than parabolic and cumulative basis function sets from other studies. Comparing predicted and clinically measured distension prediction in VCV demonstrated consistent, robust high accuracy with R2 = 0.90-0.95. CONCLUSIONS: The results demonstrate recruitment mechanics are best captured by an exponential basis function across different mechanical ventilation modes, matching physiological expectations, and accurately capture, for the first time, distension mechanics to within 5-10 % accuracy. Enabling the risk of lung injury to be predicted before changing ventilator settings. The overall outcomes significantly extend and more fully validate this digital twin or virtual mechanical ventilation patient model.


Subject(s)
Lung , Respiratory Mechanics , Humans , Respiratory Mechanics/physiology , Respiration, Artificial/methods , Positive-Pressure Respiration/methods , Respiration
14.
Gut Microbes ; 15(2): 2293312, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38087436

ABSTRACT

Intestinal dysbiosis frequently occurs in abdominal radiotherapy and contributes to irradiation (IR)-induced intestinal damage and inflammation. Akkermansia muciniphila (A. muciniphila) is a recently characterized probiotic, which is critical for maintaining the dynamics of the intestinal mucus layer and preserving intestinal microbiota homeostasis. However, the role of A. muciniphila in the alleviation of radiation enteritis remains unknown. In this study, we reported that the abundance of A. muciniphila was markedly reduced in the intestines of mice exposed to abdominal IR and in the feces of patients who received abdominal radiotherapy. Abundance of A. muciniphila in feces of radiotherapy patients was negatively correlated with the duration of diarrhea in patients. Administration of A. muciniphila substantially mitigated IR-induced intestinal damage and prevented mouse death. Analyzing the metabolic products of A. muciniphila revealed that propionic acid, a short-chain fatty acid secreted by the microbe, mediated the radioprotective effect. We further demonstrated that propionic acid bound to G-protein coupled receptor 43 (GRP43) on the surface of intestinal epithelia and increased histone acetylation and hence enhanced the expression of tight junction proteins occludin and ZO-1 and elevated the level of mucins, leading to enhanced integrity of intestinal epithelial barrier and reduced radiation-induced intestinal damage. Metformin, a first-line agent for the treatment of type II diabetes, promoted intestinal epithelial barrier integrity and reduced radiation intestinal damage through increasing the abundance of A. muciniphila. Together, our results demonstrated that A. muciniphila plays a critical role in the reduction of abdominal IR-induced intestinal damage. Application of probiotics or their regulators, such as metformin, could be an effective treatment for the protection of radiation exposure-damaged intestine.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Metformin , Humans , Mice , Animals , Intestines , Verrucomicrobia/metabolism
15.
Semin Liver Dis ; 43(4): 383-401, 2023 11.
Article in English | MEDLINE | ID: mdl-37931901

ABSTRACT

Immune checkpoint inhibitors (ICIs) have emerged as effective therapeutics for multiple cancers. Nevertheless, as immunotherapeutic approaches are being extensively utilized, substantial hurdles have arisen for clinicians. These include countering ICIs resistance and ensuring precise efficacy assessments of these drugs, especially in the context of hepatocellular carcinoma (HCC). This review attempts to offer a holistic overview of the latest insights into the ICIs resistance mechanisms in HCC, the molecular underpinnings, and immune response. The intent is to inspire the development of efficacious combination strategies. This review also examines the unconventional response patterns, namely pseudoprogression (PsP) and hyperprogression (HPD). The prompt and rigorous evaluation of these treatment efficacies has emerged as a crucial imperative. Multiple clinical, radiological, and biomarker tests have been advanced to meticulously assess tumor response. Despite progress, precise mechanisms of action and predictive biomarkers remain elusive. This necessitates further investigation through prospective cohort studies in the impending future.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Immune Checkpoint Inhibitors/therapeutic use , Prospective Studies , Liver Neoplasms/drug therapy , Disease Progression
16.
Article in English | MEDLINE | ID: mdl-37917890

ABSTRACT

Background: Aortic dissection is a critical cardiovascular disease, with Stanford Type A aortic dissection (TAAD) posing significant concern due to its high mortality rate, especially in obese patients. Acute respiratory distress syndrome (ARDS) is among the most common postoperative complications. Therefore, preventing ARDS is critically important for TAAD patients. Objective: This study aims to investigate the impact of enhanced prone mechanical ventilation on oxygenation levels, early extubation rates, and length of stay in the intensive care unit (ICU) among obese TAAD patients. The goal is to assess its potential to improve patient clinical outcomes and provide a scientific foundation for clinical practice. Case Presentation: Following evaluation by the attending physician, two hypoxemic patients underwent prone mechanical ventilation on postoperative day 3 for 12 hours daily, consecutively for 3-5 days. Patients' oxygenation significantly improved, and mechanical ventilation was discontinued after respiratory exercises. Successful removal of oral intubation was achieved, followed by individualized nursing care. No complications arose during intensive care, and both patients were transferred out of the ICU and subsequently discharged. Conclusions: The early implementation of modified prone position ventilation effectively mitigates postoperative hypoxemia in obese patients with aortic dissection. It increases the rate of early postoperative oral extubation and reduces the length of stay in the ICU.

17.
BMJ Open ; 13(8): e068129, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37652590

ABSTRACT

INTRODUCTION: Mechanical neck pain (MNP) is defined as pain in the area of the neck and/or neck-shoulder provoked by body mechanics and which adversely affects physical, psychological and social function. The treatments for MNP are limited. Previous studies and clinical experience have indicated that myofascial acupuncture might be a better treatment option for MNP, but the efficacy is controversial. Therefore, our aim is to compare the efficacy of myofascial acupuncture and routine acupuncture for MNP. METHODS AND ANALYSIS: The study is a multicentre, prospective randomised clinical trial. Patients will be recruited from four tertiary hospitals in China. A total of 438 participants with MNP will be randomly assigned into two groups, namely the 'Sancai-Tianbu' myofascial acupuncture group and the routine acupuncture group, at a ratio of 1:1. Each group will receive the acupuncture treatment twice a week for 21 days, totalling six sessions. The primary outcome will be the Visual Analogue Scale score. The secondary outcomes will be the Neck Disability Index, the cervical range of motion and the MOS 36-Item Short Form Health Survey. The assessments will be performed at baseline (immediately after allocation), pretreatment (5 min before every treatment), post-treatment (within 10 min after every treatment), postcourse (within 1 day after the course), and at 1, 3 and 6 months after the course. All patients will be included in the intent-to-treat analysis. Repeated-measure analysis of covariance will be used to determine the effects of the intervention on the outcome measures. ETHICS AND DISSEMINATION: Ethics approval was obtained from China Aerospace Science & Industry Corporation 731 Hospital, with permission number 2022-0204-01. Written informed consent will be obtained from the enrolled patients. Trial results will be disseminated in peer-reviewed publications. TRIAL REGISTRATION NUMBER: ChiCTR2200061453.


Subject(s)
Acupuncture Therapy , Neck Pain , Humans , Neck Pain/therapy , Prospective Studies , Neck , Blood Coagulation Tests , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
18.
Fish Shellfish Immunol ; 140: 108949, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37453493

ABSTRACT

Megalobrama amblycephala is one of the most economically important freshwater fish in China, and the bacterial septicemia caused by Aeromonas hydrophila is a serious threat to the breeding industry of M. amblycephala. Unfortunately, the characterization of long noncoding RNA (lncRNA) in response to A. hydrophila infection has not been performed in M. amblycephala. To better understand the biological significance of lncRNA in the immune system, we identified two lncRNA, named MSTRG.5748.1 and MSTRG.7894.1, as playing critical roles in the antibacterial response of M. amblycephala. After separating the nucleus and cytoplasm of the hepatocytes from M. amblycephala, cellular localization of MSTRG.5748.1 and MSTRG.7894.1 was performed to predict their functions. The results showed that MSTRG.5748.1 was mainly expressed in the nucleus, suggesting that its functions are mostly to regulate the expression of downstream genes through epistasis and transcription. MSTRG.7894.1 existed in both the nucleus and cytoplasm, which indicated that it has many regulatory modes. qPCR analysis showed that MSTRG.5748.1 and MSTRG.7894.1 were expressed in the immune-related organs of M. amblycephala, and significantly changed in the liver after A. hydrophila infection. RNA-seq analysis revealed that differentially expressed genes (DEGs) were mainly enriched in antigen processing and presentation via MHC class I, RIG-I-like receptor (RLR) signaling pathway, and IFN-related pathway, and a large number of pathway-related genes were significantly regulated after lncRNA overexpression in muscle cell of M. amblycephala. Overexpression of MSTRG.5748.1 and MSTRG.7894.1 significantly inhibited the expression of STING and IFN, significantly upregulated muscle cell viability, and promoted cell proliferation by targeting STING and IFN.


Subject(s)
Cyprinidae , Cypriniformes , RNA, Long Noncoding , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cypriniformes/genetics , Signal Transduction , Immunity, Innate/genetics , Aeromonas hydrophila/physiology , Fish Proteins/genetics , Fish Proteins/metabolism
19.
Sci Rep ; 13(1): 3968, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36894590

ABSTRACT

Although radiation therapy (RT) improves locoregional recurrence and overall survival in breast cancer (BC), it is not yet clear whether RT affects the risk of patients with BC developing second esophageal cancer (SEC). We enrolled patients with BC as their first primary cancer from nine registries in the Surveillance, Epidemiology, and End Results (SEER) database between 1975 and 2018. Fine-Gray competing risk regressions were assessed to determine the cumulative incidence of SECs. The standardized incidence ratio (SIR) was used to compare the prevalence of SECs among BC survivors to that in the general population of the US. Kaplan-Meier survival analysis was applied to calculate the 10-year overall survival (OS) and cancer-specific survival (CSS) rates for SEC patients. Among the 523,502 BC patients considered herein, 255,135 were treated with surgery and RT, while 268,367 had surgery without radiotherapy. In a competing risk regression analysis, receiving RT was associated with a higher risk of developing an SEC in BC patients than that in the patients not receiving RT (P = .003). Compared to the general population of the US, the BC patients receiving RT showed a greater incidence of SEC (SIR, 1.52; 95% confidence interval [CI], 1.34-1.71, P < .05). The 10-year OS and CSS rates of SEC patients after RT were comparable to those of the SEC patients after no RT. Radiotherapy was related to an increased risk of developing SECs in patients with BC. Survival outcomes for patients who developed SEC after RT were similar to those after no RT.


Subject(s)
Breast Neoplasms , Esophageal Neoplasms , Humans , Female , Breast Neoplasms/epidemiology , Breast Neoplasms/radiotherapy , SEER Program , Radiotherapy, Adjuvant/adverse effects , Neoplasm Recurrence, Local/epidemiology , Neoplasm Recurrence, Local/etiology , Prognosis , Esophageal Neoplasms/epidemiology , Esophageal Neoplasms/radiotherapy , Esophageal Neoplasms/etiology , Radiotherapy/adverse effects
20.
J Zhejiang Univ Sci B ; 24(3): 248-261, 2023 Mar 15.
Article in English, Chinese | MEDLINE | ID: mdl-36916000

ABSTRACT

An effective therapeutic regimen for hepatic fibrosis requires a deep understanding of the pathogenesis mechanism. Hepatic fibrosis is characterized by activated hepatic stellate cells (aHSCs) with an excessive production of extracellular matrix. Although promoted activation of HSCs by M2 macrophages has been demonstrated, the molecular mechanism involved remains ambiguous. Herein, we propose that the vitamin D receptor (VDR) involved in macrophage polarization may regulate the communication between macrophages and HSCs by changing the functions of exosomes. We confirm that activating the VDR can inhibit the effect of M2 macrophages on HSC activation. The exosomes derived from M2 macrophages can promote HSC activation, while stimulating VDR alters the protein profiles and reverses their roles in M2 macrophage exosomes. Smooth muscle cell-associated protein 5 (SMAP-5) was found to be the key effector protein in promoting HSC activation by regulating autophagy flux. Building on these results, we show that a combined treatment of a VDR agonist and a macrophage-targeted exosomal secretion inhibitor achieves an excellent anti-hepatic fibrosis effect. In this study, we aim to elucidate the association between VDR and macrophages in HSC activation. The results contribute to our understanding of the pathogenesis mechanism of hepatic fibrosis, and provide potential therapeutic targets for its treatment.


Subject(s)
Hepatic Stellate Cells , Receptors, Calcitriol , Humans , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Macrophages/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL