Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters








Database
Publication year range
1.
Plants (Basel) ; 13(19)2024 Sep 29.
Article in English | MEDLINE | ID: mdl-39409601

ABSTRACT

In this paper, Panax ginseng cyclophilin (PgCyP) was successfully obtained through a genetic engineering technique. A bioinformatics method was used to analyze the physicochemical properties and structure of PgCyP. The results showed that PgCyP belongs to the cyclophilin gene family. The protein encoded by the PgCyP gene contains the active site of PPIase (R62, F67, and H133) and a binding site for cyclosporine A (W128). The relative molecular weight of PgCyP is 187.11 bp; its theoretical isoelectric point is 7.67, and it encodes 174 amino acids. The promoter region of PgCyP mainly contains the low-temperature environmental stress response (LTR) element, abscisic acid-responsive cis-acting element (ABRE), and light-responsive cis-acting element (G-Box). PgCyP includes a total of nine phosphorylation sites, comprising four serine phosphorylation sites, three threonine phosphorylation sites, and two tyrosine phosphorylation sites. PgCyP was recombined and expressed in vitro, and its recombinant expression was investigated. Furthermore, it was found that the recombinant PgCyP protein could effectively inhibit the germination of Phytophthora cactorum spores and the normal growth of Phytophthora cactorum mycelia in vitro. Further experiments on the roots of susceptible Arabidopsis thaliana showed that the PgCyP protein could improve the resistance of arabidopsis to Phytophthora cactorum. The findings of this study provide a basis for the use of the PgCyP protein as a new type of green biopesticide.

2.
Int J Biol Macromol ; 279(Pt 4): 135415, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39245119

ABSTRACT

Yam is a dual-purpose crop used in both medicine and food that is commonly used as a dietary supplement in food processing. Since yam proteins are often lost during the production of yam starch, elucidating the functionally active value of yam proteins is an important guideline for fully utilizing yam in industrial production processes. This study aimed to explore the potential protective effect of yam protein (YP) on cyclophosphamide (CTX)-induced immunosuppression in mice. The results showed that YP can reduce immune damage caused by CTX by reversing immunoglobulins (IgA, IgG and IgM), cytokines (TNF-α, IL-6, etc.) in the intestines of mice. Moreover, YPs were found to prevent CTX-induced microbiota dysbiosis by enhancing the levels of beneficial bacteria within the microbiome, such as Lactobacillus, and lowering those of Desulfovibrio_R and Helicobacter_A. Metabolomics analyses showed that YP significantly altered differential metabolites (tryptophan, etc.) and metabolic pathways (ABC transporter protein, etc.) associated with immune responses in the gut. Furthermore, important connections were noted between particular microbiomes and metabolites, shedding light on the immunoprotective effects of YPs by regulating gut flora and metabolism. These findings deepen our understanding of the functional properties of YPs and lay a solid foundation for the utilization of yam.


Subject(s)
Cyclophosphamide , Dioscorea , Gastrointestinal Microbiome , Cyclophosphamide/pharmacology , Animals , Gastrointestinal Microbiome/drug effects , Mice , Dioscorea/chemistry , Plant Proteins/pharmacology , Male , Intestines/drug effects , Intestines/microbiology , Intestines/immunology , Cytokines/metabolism , Immunosuppression Therapy , Dysbiosis/chemically induced
3.
Molecules ; 29(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38893392

ABSTRACT

Neurodegenerative diseases represent a cluster of conditions characterized by the progressive degeneration of the structure and function of the nervous system. Despite significant advancements in understanding these diseases, therapeutic options remain limited. The medicinal mushroom Ganoderma lucidum has been recognized for its comprehensive array of bioactive compounds with anti-inflammatory and antioxidative effects, which possess potential neuroprotective properties. This literature review collates and examines the existing research on the bioactivity of active compounds and extracts from Ganoderma lucidum in modulating the pathological hallmarks of neurodegenerative diseases. The structural information and preparation processes of specific components, such as individual ganoderic acids and unique fractions of polysaccharides, are presented in detail to facilitate structure-activity relationship research and scale up the investigation of in vivo pharmacology. The mechanisms of these components against neurodegenerative diseases are discussed on multiple levels and elaborately categorized in different patterns. It is clearly presented from the patterns that most polysaccharides of Ganoderma lucidum possess neurotrophic effects, while ganoderic acids preferentially target specific pathogenic proteins as well as regulating autophagy. Further clinical trials are necessary to assess the translational potential of these components in the development of novel multi-target drugs for neurodegenerative diseases.


Subject(s)
Neurodegenerative Diseases , Neuroprotective Agents , Reishi , Neurodegenerative Diseases/drug therapy , Humans , Reishi/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/therapeutic use , Animals , Triterpenes/pharmacology , Triterpenes/chemistry , Triterpenes/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/therapeutic use , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/therapeutic use
4.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2461-2467, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812145

ABSTRACT

In this study, the chemical components of ethanol extract from the aromatic parts of Syringa oblata were systematically separated and purified by silica gel column chromatography, thin layer plate preparation and liquid phase preparation. Combined with ultraviolet analyzer(UV), infrared analyzer(IR), nuclear magnetic resonance analyzer(NMR), high resolution mass spectrometer(HR-ESI-MS), X-ray diffraction and other spectrum technology as well as literature physicochemical data comparison methods for structural identification, a total of 10 compounds were identified. They were identified as oblatanoid D(1),(-)-T-muurolol(2), oblatanoid E-G(3-5), 14-noreudesma-3-hydroxy-3-en-2,9-dione(6), 1-isopropyl-2,7-dimethylnaphthalene(7), isocoradiol(8), α-calacorene(9), cadin-4-en-1-ß-ol(10). Compound 1 is a new sesquiterpene compound that has not been reported, and the other 9 compounds are isolated from S. oblata for the first time. The compound 1 has a significant protective effect on the LPS-induced inflammatory injury model of RAW264.7 cells.


Subject(s)
Sesquiterpenes , Syringa , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Animals , Mice , Syringa/chemistry , RAW 264.7 Cells , Molecular Structure , Drugs, Chinese Herbal/chemistry , Magnetic Resonance Spectroscopy , X-Ray Diffraction
5.
RSC Adv ; 14(1): 602-607, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38173615

ABSTRACT

In this work, a novel fluorescence sensor UiO-66-PSM based on post-synthetic modified metal-organic frameworks was prepared for the detection of berberine hydrochloride (BBH) in the traditional Chinese herb Coptis. UiO-66-PSM was synthesized by a simple Schiff base reaction with UiO-66-NH2 and phthalaldehyde (PAD). The luminescence quenching can be attributed to the photo-induced electron transfer process from the ligand of UiO-66-PSM to BBH. The UiO-66-PSM sensor exhibited fast response time, low detection limit, and high selectivity to BBH. Moreover, the UiO-66-PSM sensor was successfully applied to the quantitative detection of BBH in the traditional Chinese herb Coptis, and the detection results obtained from the as-fabricated fluorescence sensing assay were consistent with those of high-performance liquid chromatography (HPLC), indicating that this work has potential applicability for the detection of BBH in traditional Chinese herbs.

6.
Mikrochim Acta ; 187(3): 166, 2020 02 13.
Article in English | MEDLINE | ID: mdl-32055961

ABSTRACT

Doubly charged pH-responsive core/shell hydrogel nanoparticles with green fluorescence were prepared and were shown to be viable bioprobes for active targeting tumor tissue and imaging of cancer cells. Via emulsionfree copolymerization hydrogel nanoparticles as VANPs were prepared, the core of which was polystyrene (Ps) and the shell was comprised of strongly positive electrolyte (ar-vinylbenzyl)trimethylammonium (VBTAC) with weak negative electrolyte acrylic acid (AA). Through conventional amidation, the shell was conjugated with cell-specific folic acid (FA), denoted as VANPs-FA. Then, negatively charged sulfonated 9,10-distyrylanthracene derivatives (SDSA) based on aggregation induced emission (AIE), was binding tightly to positively charged VBTAC of VANPs-FA shell. The prepared double charged fluorescent core/shell hydrogel nanoparticles abbreviated as VANPs-FS, showed excitation/emission wavelengths at ~420/528 nm. Dynamic light scattering (DLS) measurements were performed to determine the size and surficial zeta potential of VANPs-FS. Under proper ratio of VBTAC to AA, the VANPs-FS was stable (~ 64.63 nm, -20.2 mV) at high pH (> 7), started to aggregate (~ 683.0 nm, -3.2 mV) at pH around 6, and can redispers at low pH (< 5). The MTT analysis proved that VANPs-FS had good biocompatibility and low cytotoxicity. The targeting effectiveness of VANPs-FS was confirmed by confocal laser scanning microscopy (CLSM). Graphical abstract Detailed synthetic route of VANPs-FS (top) and schematic cancer tumor-target aggregation of pH-sensitive VANPs-FS with enhanced retention and rapid cancer cell imaging (bottom).


Subject(s)
Acrylates/chemistry , Nanoparticles/chemistry , Polystyrenes/chemistry , Humans , Hydrogen-Ion Concentration
7.
Analyst ; 143(21): 5145-5150, 2018 Oct 22.
Article in English | MEDLINE | ID: mdl-30246811

ABSTRACT

Gold nanoclusters have attracted widespread attention because of their unique optical and physical properties. However, traditional synthesis methods are complicated and require additional reducing agents, while the yield is often very low. Such resource and time-consuming synthesis processes limit their further application. Herein, a rapid sonochemical route is used to synthesize fluorescent Au nanoclusters in large quantities using glutathione (GSH) both as a capping and reducing agent. These Au nanoclusters are synthesized quickly (∼40 min) due to the presence of ultrasonic waves, and show orange red photoluminescence (Em = 598 nm), small size (∼2 nm) and good dispersion in aqueous solution. Moreover, GSH, as a protecting agent on the surface of resultant Au nanoclusters, has many functional groups including carboxyl and amino groups because of which the nanoclusters show high photo-, storage-, metal- and pH-stability. A stable Au nanoclusters-based nano-sensor is designed for highly sensitive and selective label-free detection of Cu2+ with a low limit of detection of 7 ppb (based on S/N = 3). The fluorescent probe can be used in versatile nanothermometry devices, because their photoluminescence intensity correlates strongly with temperature and varies considerably over a wide temperature range (20-80 °C). Therefore, the novel fluorescent sensing probe has great application prospects in Cu2+ detection and temperature sensing.

SELECTION OF CITATIONS
SEARCH DETAIL