Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters








Database
Language
Publication year range
1.
Math Biosci Eng ; 20(7): 12263-12297, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37501442

ABSTRACT

To address the problems of slow convergence speed and low accuracy of the chimp optimization algorithm (ChOA), and to prevent falling into the local optimum, a chaos somersault foraging ChOA (CSFChOA) is proposed. First, the cat chaotic sequence is introduced to generate the initial solutions, and then opposition-based learning is used to select better solutions to form the initial population, which can ensure the diversity of the algorithm at the beginning and improve the convergence speed and optimum searching accuracy. Considering that the algorithm is likely to fall into local optimum in the final stage, by taking the optimal solution as the pivot, chimps with better adaptation at the mirror image position replace chimps from the original population using the somersault foraging strategy, which can increase the population diversity and expand the search scope. The optimization search tests were performed on 23 standard test functions and CEC2019 test functions, and the Wilcoxon rank sum test was used for statistical analysis. The CSFChOA was compared with the ChOA and other improved intelligent optimization algorithms. The experimental results show that the CSFChOA outperforms most of the other algorithms in terms of mean and standard deviation, which indicates that the CSFChOA performs well in terms of the convergence accuracy, convergence speed and robustness of global optimization in both low-dimensional and high-dimensional experiments. Finally, through the test and analysis comparison of two complex engineering design problems, the CSFChOA was shown to outperform other algorithms in terms of optimal cost. For the design of the speed reducer, the performance of the CSFChOA is 100% better than other algorithms in terms of optimal cost; and, for the design of a three-bar truss, the performance of the CSFChOA is 6.77% better than other algorithms in terms of optimal cost, which verifies the feasibility, applicability and superiority of the CSFChOA in practical engineering problems.

2.
Biomed Res Int ; 2022: 7921922, 2022.
Article in English | MEDLINE | ID: mdl-36457339

ABSTRACT

Accurate nuclear instance segmentation and classification in histopathologic images are the foundation of cancer diagnosis and prognosis. Several challenges are restricting the development of accurate simultaneous nuclear instance segmentation and classification. Firstly, the visual appearances of different category nuclei could be similar, making it difficult to distinguish different types of nuclei. Secondly, it is thorny to separate highly clustering nuclear instances. Thirdly, rare current studies have considered the global dependencies among diverse nuclear instances. In this article, we propose a novel deep learning framework named TSHVNet which integrates multiattention modules (i.e., Transformer and SimAM) into the state-of-the-art HoVer-Net for the sake of a more accurate nuclear instance segmentation and classification. Specifically, the Transformer attention module is employed on the trunk of the HoVer-Net to model the long-distance relationships of diverse nuclear instances. The SimAM attention modules are deployed on both the trunk and branches to apply the 3D channel and spatial attention to assign neurons with appropriate weights. Finally, we validate the proposed method on two public datasets: PanNuke and CoNSeP. The comparison results have shown the outstanding performance of the proposed TSHVNet network among the state-of-art methods. Particularly, as compared to the original HoVer-Net, the performance of nuclear instance segmentation evaluated by the PQ index has shown 1.4% and 2.8% increases on the CoNSeP and PanNuke datasets, respectively, and the performance of nuclear classification measured by F1_score has increased by 2.4% and 2.5% on the CoNSeP and PanNuke datasets, respectively. Therefore, the proposed multiattention-based TSHVNet is of great potential in simultaneous nuclear instance segmentation and classification.


Subject(s)
Cell Nucleus , Electric Power Supplies , Cluster Analysis , Neurons
3.
Biomed Res Int ; 2022: 2961610, 2022.
Article in English | MEDLINE | ID: mdl-36246965

ABSTRACT

The formation of breast tubules plays an important role in the pathological grading of breast cancer. Breast tubules surrounded by a large number of epithelial cells are located in the subcutaneous tissue of the chest. The shapes of breast tubules are various, including tubular, round, and oval, which makes the process of breast tubule segmentation a difficult task. Deep learning technology, capable of learning complex data structures via efficient representation, could help pathologists accurately detect breast tubules in hematoxylin and eosin (H&E) stained images. In this paper, we propose a deep learning model named DKS-DoubleU-Net to accurately segment breast tubules with complex appearances in H&E images. The proposed DKS-DoubleU-Net model suggests using a DenseNet module as the encoder of the second subnetwork of DoubleU-Net, which utilizes dense features between layers and strengthens the propagation of features extracted in all previous layers, in order to better discover the intrinsic characteristics of breast tubules with complex structures and diverse shapes. Moreover, a feature fusing module called Kernel Selecting Module (KSM) is inserted before each output layer of the two U-Net branches of the DoubleU-Net, to implement a multiscale feature fusion via a self-adaptive kernel selecting for the sake of accurate segmentation of breast tubules in different sizes. The experiments on the public BRACS dataset and a private clinical dataset have shown that our model achieves better segmentation performance, compared to the state-of-art models of U-Net, DoubleU-Net, ResUnet++, HRNet, and DeepLabV3+. Specifically, on the public BRACS dataset, our method produced an F1-Score of 92.98%, which outperforms the F1-Score of U-Net, DoubleU-Net, and HRNet by 4.24%, 0.37%, and 1.68%, respectively, and is much better than performances of DeepLabV3+ and ResUnet++ by 7.83% and 23.84%, respectively. On the private clinic dataset, the proposed model achieved an F1-Score of 73.13%, which has shown an improvement of 10.31%, 1.89%, 4.88%, 15.47%, and 31.1% to the performances of the U-Net, DoubleU-Net, HRNet, DeepLabV3+, and ResUnet++, respectively. Superior performance could also be observed when comparing the proposed DKS-DoubleU-Net with the others using the metrics of Dice and mIou.


Subject(s)
Image Processing, Computer-Assisted , Eosine Yellowish-(YS) , Hematoxylin , Image Processing, Computer-Assisted/methods
4.
PeerJ Comput Sci ; 7: e611, 2021.
Article in English | MEDLINE | ID: mdl-35036526

ABSTRACT

The GF-3 satellite is China's first self-developed active imaging C-band multi-polarization synthetic aperture radar (SAR) satellite with complete intellectual property rights, which is widely used in various fields. Among them, the detection and recognition of banklines of GF-3 SAR image has very important application value for map matching, ship navigation, water environment monitoring and other fields. However, due to the coherent imaging mechanism, the GF-3 SAR image has obvious speckle, which affects the interpretation of the image seriously. Based on the excellent multi-scale, directionality and the optimal sparsity of the shearlet, a bankline detection algorithm based on shearlet is proposed. Firstly, we use non-local means filter to preprocess GF-3 SAR image, so as to reduce the interference of speckle on bankline detection. Secondly, shearlet is used to detect the bankline of the image. Finally, morphological processing is used to refine the bankline and further eliminate the false bankline caused by the speckle, so as to obtain the ideal bankline detection results. Experimental results show that the proposed method can effectively overcome the interference of speckle, and can detect the bankline information of GF-3 SAR image completely and smoothly.

SELECTION OF CITATIONS
SEARCH DETAIL