Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters








Publication year range
1.
Water Res ; 254: 121360, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38422695

ABSTRACT

Multiple human-induced environmental stressors significantly threaten global biodiversity and ecosystem functioning. Climate warming and chemical pollution are two widespread stressors whose impact on freshwaters is likely to increase. However, little is known about the combined effects of warming on the bioaccumulation of environmentally relevant mixtures of emerging contaminants, such as pharmaceutically active compounds (PhACs) in freshwater biota. This study investigated the bioaccumulation of a mixture of 15 selected PhACs at environmentally relevant concentrations in common freshwater macroinvertebrate taxa, exposed to ambient temperatures and warming (+4 °C) during the warm and cold seasons in two outdoor mesocosm experiments. Nine PhACs (carbamazepine, cetirizine, clarithromycin, clindamycin, fexofenadine, telmisartan, trimethoprim, valsartan and venlafaxine) were dissipated faster in the warm season experiment than in the cold season experiment, while lamotrigine showed the opposite trend. The most bioaccumulated PhACs in macroinvertebrates were tramadol, carbamazepine, telmisartan, venlafaxine, citalopram and cetirizine. The bioaccumulation was taxon, season and temperature dependent, but differences could not be fully explained by the different water stability of the PhACs and their partitioning between water and leaf litter. The highest water-based bioaccumulation factors were found in Asellus and Planorbarius. Moreover, the bioaccumulation of some PhACs increased with warming in Planorbarius, suggesting that it could be used as a sentinel taxon in environmental studies of the effects of climate warming on PhAC bioaccumulation.


Subject(s)
Cetirizine , Ecosystem , Animals , Humans , Bioaccumulation , Telmisartan , Venlafaxine Hydrochloride , Invertebrates , Fresh Water , Carbamazepine , Water , Pharmaceutical Preparations
2.
Water Res ; 250: 121053, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38159539

ABSTRACT

Multiple anthropogenic stressors influence the functioning of lakes and ponds, but their combined effects are often little understood. We conducted two mesocosm experiments to evaluate the effects of warming (+4 °C above ambient temperature) and environmentally relevant concentrations of a mixture of commonly used pharmaceuticals (cardiovascular, psychoactive, antihistamines, antibiotics) on tri-trophic food webs representative of communities in ponds and other small standing waters. Communities were constituted of phyto- and zooplankton and macroinvertebrates (molluscs and insects) including benthic detritivores, grazers, omnivorous scrapers, omnivorous piercers, water column predators, benthic predators, and phytophilous predators. We quantified the main and interactive effects of warming and pharmaceuticals on each trophic level in the pelagic community and attributed them to the direct effects of both stressors and the indirect effects arising through biotic interactions. Warming and pharmaceuticals had stronger effects in the summer experiment, altering zooplankton community composition and causing delayed or accelerated emergence of top insect predators (odonates). In the summer experiment, both stressors and top predators reduced the biomass of filter-feeding zooplankton (cladocerans), while warming and pharmaceuticals had opposite effects on phytoplankton. In the winter experiment, the effects were much weaker and were limited to a positive effect of warming on phytoplankton biomass. Overall, we show that pharmaceuticals can exacerbate the effects of climate warming in freshwater ecosystems, especially during the warm season. Our results demonstrate the utility of community-level studies across seasons for risk assessment of multiple emerging stressors in freshwater ecosystems.


Subject(s)
Ecosystem , Food Chain , Animals , Climate , Phytoplankton , Zooplankton , Lakes , Pharmaceutical Preparations
3.
Environ Sci Pollut Res Int ; 30(42): 96219-96230, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37566327

ABSTRACT

Global climate changes cause water scarcity in many regions, and the sustainable use of recycled water appears crucial, especially in agriculture. However, potentially hazardous compounds such as pharmaceuticals can enter the food chain and pose severe risks. This paper aims to study the presence of selected pharmaceutical active compounds (PhACs) and their metabolites in crops grown in aeroponic conditions and evaluate the potential of PhAC plant uptake. A solvent extraction with an acidified mixture of acetonitrile and water followed by LC-HRMS was developed and validated for quantifying nine pharmaceuticals and their nine metabolites in three plants. We aimed for a robust method with a wide linear range because an extensive concentration range in different matrices was expected. The developed method proved rapid and reliable determination of selected pharmaceuticals in plants in the wide concentration range of 10 to 20,000 ng g-1 and limit of detection range 0.4 to 9.0 ng g-1. The developed method was used to study the uptake and translocation of pharmaceuticals and their metabolites in plant tissues from an aeroponic experiment at three different pH levels. Carbamazepine accumulated more in the leaves of spinach than in arugula. On the other hand, sulfamethoxazole and clindamycin evinced higher accumulation in roots than in leaves, comparable in both plants. The expected effect of pH on plants' uptake was not significant.


Subject(s)
Agriculture , Crops, Agricultural , Agriculture/methods , Water , Pharmaceutical Preparations , Hydrogen-Ion Concentration
4.
Environ Monit Assess ; 195(6): 739, 2023 May 26.
Article in English | MEDLINE | ID: mdl-37233798

ABSTRACT

A conventional evaluation methodology for drinking water pollution focuses on analysing hundreds of compounds, usually by liquid chromatography-tandem mass spectrometry. High-resolution mass spectrometry allows comprehensive evaluation of all detected signals (compounds) based on their elemental composition, intensity, and numbers. We combined target analysis of 192 emerging micropollutants with nontarget (NT) full-scan/MS/MS methods to describe the impact of treatment steps in detail and assess drinking water treatment efficiency without compound identification. The removal efficiency based on target analytes ranged from - 143 to 97%, depending on the treatment section, technologies, and season. The same effect calculated for all signals detected in raw water by the NT method ranged between 19 and 65%. Ozonation increased the removal of micropollutants from the raw water but simultaneously caused the formation of new compounds. Moreover, ozonation byproducts showed higher persistence than products formed during other types of treatment. We evaluated chlorinated and brominated organics detected by specific isotopic patterns within the developed workflow. These compounds indicated anthropogenic raw water pollution but also potential treatment byproducts. We could match some of these compounds with libraries available in the software. We can conclude that passive sampling combined with nontargeted analysis shows to be a promising approach for water treatment control, especially for long-term monitoring of changes in technology lines because passive sampling dramatically reduces the number of samples and provides time-weighted average information for 2 to 4 weeks.


Subject(s)
Drinking Water , Ozone , Water Pollutants, Chemical , Water Purification , Tandem Mass Spectrometry/methods , Drinking Water/analysis , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Water Purification/methods , Ozone/analysis
5.
Environ Sci Pollut Res Int ; 30(18): 54160-54176, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36869956

ABSTRACT

The accumulation of six pharmaceuticals of different therapeutic uses has been thoroughly investigated and compared between onion, spinach, and radish plants grown in six soil types. While neutral molecules (e.g., carbamazepine (CAR) and some of its metabolites) were efficiently accumulated and easily translocated to the plant leaves (onion > radish > spinach), the same for ionic (both anionic and cationic) molecules seems to be minor to moderate. The maximum accumulation of CAR crosses 38,000 (onion), 42,000 (radish), and 7000 (spinach) ng g-1 (dry weight) respectively, in which the most majority of them happened within the plant leaves. Among the metabolites, the accumulation of carbamazepine 10,11-epoxide (EPC - a primary CAR metabolite) was approximately 19,000 (onion), 7000 (radish), and 6000 (spinach) ng g-1 (dry weight) respectively. This trend was considerably similar even when all these pharmaceuticals applied together. The accumulation of most other molecules (e.g., citalopram, clindamycin, clindamycin sulfoxide, fexofenadine, irbesartan, and sulfamethoxazole) was restricted to plant roots, except for certain cases (e.g., clindamycin and clindamycin sulfoxide in onion leaves). Our results clearly demonstrated the potential role of this accumulation process on the entrance of pharmaceuticals/metabolites into the food chain, which eventually becomes a threat to associated living biota.


Subject(s)
Raphanus , Soil Pollutants , Soil/chemistry , Raphanus/metabolism , Onions , Spinacia oleracea/metabolism , Clindamycin/metabolism , Plants/metabolism , Pharmaceutical Preparations/metabolism , Soil Pollutants/analysis
6.
Sci Total Environ ; 865: 161174, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36586677

ABSTRACT

The sorption of organic contaminants in soils and sediment is a crucial factor affecting their mobility in the vadose zone environment. The Freundlich sorption isotherms were evaluated for eleven micropollutants and eight soils. The highest Freundlich sorption coefficients, KF, were obtained for triclosan (324 ± 153 cm3/nµg1-1/ng-1) followed by sertraline (120 ± 74), venlafaxine (74.3 ± 41.2), telmisartan (33.3 ± 13.6), atorvastatin (8.66 ± 4.78), bisphenol S (8.03 ± 4.87), lamotrigine (6.92 ± 3.02), 2-phenylbenzimidazole-5-sulfonic acid (3.77 ± 2.25), memantine (3.42 ± 1.64), 1-methyl-1H-benzotriazole (2.05 ± 0.99), and valsartan (0.88 ± 0.89). The KF values for the individual compounds were correlated with soil properties. Multiple linear regressions were used to derive equations for predicting the KF values using the soil properties. The first set of equations contained mainly properties with the strongest correlations with the KF values, e.g., a base cation saturation for positively charged compounds or a hydrolytic acidity for negatively charged compounds. The second set of equations contained properties included in the map of agricultural soils of the Czech Republic. These equations always indicated positive correlations with oxidizable organic carbon and clay content. They also included either a negative or positive correlation with pHKCl. A positive correlation with pHKCl was obtained for venlafaxine, memantine, and sertraline, which were mostly positively charged. A negative correlation with pHKCl was obtained for the remaining compounds. The second set of equations, the soil map, and the database of soil properties were used to predict the KF value distributions within the Czech agricultural soils. It resulted in similar KF distributions' patterns for valsartan, lamotrigine, atorvastatin, and telmisartan (with a positive correlation between KF and hydrolytic acidity), which considerably differed from the KF patterns for the other compounds. These maps were used to delineate areas with a leaching potential of the compounds toward groundwater that will serve as a tool for assessing a potential groundwater vulnerability.

7.
Sci Total Environ ; 864: 161071, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36565860

ABSTRACT

An upscaled passive sampler variant (diffusive hydrogel-based passive sampler; HPS) based on diffusive gradients in thin films for polar organic compounds (o-DGT) with seven times higher surface area (22.7 cm2) than a typical o-DGT sampler (3.14 cm2) was tested in several field studies. HPS performance was tested in situ within a calibration study in the treated effluent of a municipal wastewater treatment plant and in a verification study in the raw municipal wastewater influent. HPS sampled integratively for up to 14 days in the effluent, and 8 days in the influent. Sampling rates (Rs) were derived for 44 pharmaceuticals and personal care products, 3 perfluoroalkyl substances, 2 anticorrosives, and 21 pesticides and metabolites, ranging from 6 to 132 mL d-1. Robustness and repeatability of HPS deteriorated after exposures longer than 14 days due to microbial and physical damage of the diffusive agarose layer. In situ Rs values for the HPS can be applied to estimate the aqueous concentration of the calibrated polar organic compounds in wastewater within an uncertainty factor of four. When accepting this level of accuracy, the HPS can be applied for monitoring trends of organic micropollutants in wastewater.

8.
Environ Pollut ; 309: 119715, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35809709

ABSTRACT

Surface water quality monitoring programs have been developed to examine traditional contaminants, such as persistent organic pollutants (POPs). However, urbanization, which is increasing around the world, is increasing discharge of treated wastewater and raw sewage in many regions. Pharmaceuticals and their metabolites represent typical markers of such trajectories in urbanization. We selected an ongoing monitoring program, which was designed for routine surveillance of nonionizable POPs in different aquatic matrices, to examine the occurrence of 67 pharmaceuticals and their metabolites in water and multiple bioindicator matrices: benthic invertebrates, juvenile fish, and adult fish (plasma and muscle tissue) from ten river systems with varying levels of watershed development. In addition, we placed zebra mussels and passive samplers in situ for a fixed period. A statistically significant relationship between pharmaceutical levels in passive samplers and biota was found for caged zebra mussels and benthic invertebrates, while only a few pharmaceuticals were identified in fish matrices. Invertebrates, which have received relatively limited study for pharmaceutical bioaccumulation, accumulated more pharmaceuticals than fish, up to thirty different substances. The highest concentration was observed for sertraline in zebra mussels and telmisartan in benthic invertebrates (83 and 31 ng/g ww, respectively). Our results across diverse study systems indicate that ongoing surface water quality monitoring programs, which were originally designed for traditional organic pollutants, need to be revised to account for bioaccumulation dynamics of pharmaceuticals and other ionizable contaminants. Aquatic monitoring programs routinely examine accumulation of nonionizable organic pollutants; however, we identified that these efforts need to be revised to account for bioaccumulation of ionizable contaminants, which reached higher levels in invertebrates than in fish.


Subject(s)
Water Pollutants, Chemical , Animals , Biological Monitoring , Environmental Monitoring , Fishes/metabolism , Invertebrates/metabolism , Pharmaceutical Preparations/metabolism , Rivers , Water Pollutants, Chemical/analysis
9.
Environ Pollut ; 303: 119117, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35276249

ABSTRACT

Treated wastewater ponds (TWPs) serve as recipients and passive tertiary treatment mediators for recycled water. These nutrient-rich habitats are increasingly utilised in aquaculture, nevertheless multiple loads of various contaminants with adverse effects on aquatic fauna, including fish, have been recorded. In the present study, we investigated the effects of fish transfer in response to altered levels of pollution on liver metabolic profiles and tissue-specific oxidative stress biomarkers during short- and long-term exposure. In a field experiment, common carp (Cyprinus carpio) originating in severely polluted TWP were restocked after one year to a reference pond with a background pollutant concentration typical of the regional river. In contrast, fish that originated in the reference pond were restocked to TWP. Fish were sampled 0, 7, 14, 60, and 180 days after restocking and fish liver, kidney, intestine, and gill tissues were subjected to biomarker analysis. Pharmaceutically active compounds (PhACs) and metabolic profiles were determined in fish liver using liquid chromatography high-resolution mass spectrometry (LC-HRMS). Fish transferred from reference to polluted pond increased the antioxidant response and absorbed PhACs into metabolism within seven days. Fish liver metabolic profiles were shifted rapidly, but after 180 days to a lesser extent than profiles in fish already adapted in polluted water. Restocked fish from polluted to reference pond eliminated PhACs during the short phase within 14 days, and the highest antioxidant response accompanied the depuration process. Numerous elevated metabolic compounds persisted in such exposed fish for at least 60 days. The period of two weeks was suggested as sufficient for PhACs depuration, but more than two months after restocking is needed for fish to stabilise their metabolism. This study contributed to determining the safe handling with marketed fish commonly restocked to wastewaters and clarified that water pollution irreversibly altered fish metabolic profile.


Subject(s)
Carps , Water Pollutants, Chemical , Animals , Antioxidants/metabolism , Carps/metabolism , Liver/metabolism , Metabolome , Oxidative Stress , Wastewater/analysis , Water/analysis , Water Pollutants, Chemical/analysis , Water Pollution/analysis
10.
J Hazard Mater ; 423(Pt B): 127008, 2022 02 05.
Article in English | MEDLINE | ID: mdl-34844334

ABSTRACT

Soil pollution from emerging contaminants poses a significant threat to water resources management and food production. The development of numerical models to describe the reactive transport of chemicals in both soil and plant is of paramount importance to elaborate mitigation strategies. To this aim, in the present study, a multiscale biophysical model is developed to predict the fate of ionizable compound in the soil-plant continuum. The modeling framework connects a multi-organelles model to describe processes at the cell level with a semi-mechanistic soil-plant model, which includes the widely used Richards-based solver, HYDRUS. A Bayesian probabilistic framework is used to calibrate and assess the capability of the model in reproducing the observations from an experiment on the translocation of five pharmaceuticals in green pea plants. Results show satisfactory fitting performance and limited predictive uncertainty. The subsequent validation with the cell model indicates that the estimated soil-plant parameters preserve a physically realistic meaning, and their calibrated values are comparable with the existing literature values, thus confirming the overall reliability of the analysis. Model results further suggest that pH conditions in both soil and xylem play a crucial role in the uptake and translocation of ionizable compounds.


Subject(s)
Soil Pollutants , Soil , Bayes Theorem , Plants , Reproducibility of Results , Soil Pollutants/analysis
11.
Environ Sci Pollut Res Int ; 29(6): 9023-9037, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34498192

ABSTRACT

Zayandeh Rood river is the most important river in central Iran supplying water for a variety of uses including drinking water for approximately three million inhabitants. The study aimed to investigate the quality of water concerning the presence of pharmaceutical active compounds (PhACs) and hormonelike compounds, which have been only poorly studied in this region. Sampling was performed at seven sites along the river (from headwater sites to downstream drinking water source, corresponding drinking water, and treated wastewater) affected by wastewater effluents, specific drought conditions, and high river-water demand. The targeted and nontargeted chemical analyses and in vitro bioassays were used to evaluate the presence of PhACs and hormonelike compounds in river water. In the samples, 57 PhACs and estrogens were detected with LC-MS/MS with the most common and abundant compounds valsartan, carbamazepine, and caffeine present in the highest concentrations in the treated wastewater in the concentrations of 8.4, 19, and 140 µg/L, respectively. A battery of in vitro bioassays detected high estrogenicity, androgenicity, and AhR-mediated activity (viz., in treated wastewater) in the concentrations 24.2 ng/L, 62.2 ng/L, and 0.98 ng/L of 17ß-estradiol, dihydrotestosterone and 2,3,7,8-TCDD equivalents, respectively. In surface water samples, estrogenicity was detected in the range of <0.42 (LOD) to 1.92 ng/L of 17ß-estradiol equivalents, and the drinking water source contained 0.74 ng/L of 17ß-estradiol equivalents. About 19% of the estrogenicity could be explained by target chemical analyses, and the remaining estrogenicity can be at least partially attributed to the potentiation effect of detected surfactant residues. Drinking water contained several PhACs and estrogens, but the overall assessment suggested minor human health risk according to the relevant effect-based trigger values. To our knowledge, this study provides some of the first comprehensive information on the levels of PhACs and hormones in Iranian waters.


Subject(s)
Drinking Water , Pharmaceutical Preparations , Water Pollutants, Chemical , Chromatography, Liquid , Estrogens/analysis , Humans , Iran , Tandem Mass Spectrometry , Wastewater , Water Pollutants, Chemical/analysis
12.
Environ Sci Technol ; 55(5): 2991-3000, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33587851

ABSTRACT

Food contamination is a major worldwide risk for human health. Dynamic plant uptake of pollutants from contaminated environments is the preferred pathway into the human and animal food chain. Mechanistic models represent a fundamental tool for risk assessment and the development of mitigation strategies. However, difficulty in obtaining comprehensive observations in the soil-plant continuum hinders their calibration, undermining their generalizability and raising doubts about their widespread applicability. To address these issues, a Bayesian probabilistic framework is used, for the first time, to calibrate and assess the predictive uncertainty of a mechanistic soil-plant model against comprehensive observations from an experiment on the translocation of carbamazepine in green pea plants. Results demonstrate that the model can reproduce the dynamics of water flow and solute reactive transport in the soil-plant domain accurately and with limited uncertainty. The role of different physicochemical processes in bioaccumulation of carbamazepine in fruits is investigated through Global Sensitivity Analysis, which shows how soil hydraulic properties and soil solute sorption regulate transpiration streams and bioavailability of carbamazepine. Overall, the analysis demonstrates the usefulness of mechanistic models and proposes a comprehensive numerical framework for their assessment and use.


Subject(s)
Soil Pollutants , Soil , Animals , Bayes Theorem , Carbamazepine/analysis , Humans , Pisum sativum , Soil Pollutants/analysis
13.
Sci Total Environ ; 751: 141801, 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-32861950

ABSTRACT

Bisphenols are increasingly recognized as environmental pollutants with endocrine-disrupting potential. Nonetheless, the study of environmental occurrence and some endocrine-disrupting activities of some bisphenols came widely into focus of research only recently. The aims of the present study were to: 1) determine the predominant bisphenols in Norwegian sewage sludge and sediment and in Czech surface waters, and 2) characterize the binding of bisphenols to a transport protein transthyretin (TTR) and their (anti-)thyroid, (anti-)progestagenic, and (anti-)androgenic activities. High-performance liquid chromatography with atmospheric pressure chemical ionization or photoionization coupled with high resolution mass spectrometry (HPLC-APCI/APPI-HRMS) and Chemically Activated LUciferase gene eXpression (CALUX) in vitro reporter gene bioassays were used to detect the target compounds and to determine endocrine-disrupting activities, respectively. Bisphenol A (BPA), 4,4'-bisphenol F (BPF), bisphenol S (BPS), and bisphenol E (BPE) were the most frequently found compounds in municipal sewage sludge. Furthermore, bisphenol TMC (BPTMC) and bisphenol AF (BPAF) frequently occurred in sediment and surface waters, respectively. BPA was the major contributor to Ʃ of bisphenols in Norwegian sewage sludge with exception of one sample where BPF predominated. We also monitored a few bisphenols in sediment but only BPTMC was found. BPA, BPAF and BPF were the dominant bisphenols in Czech surface waters. Some bisphenols have shown TTR binding potency (BPAF = BPF > BPA = BPE) and some have displayed the following endocrine-disrupting activities: anti-thyroid (BPAF), anti-progestagenic (BPTMC > BPA = BPAF), and anti-androgenic (BPAF > BPE > BPA > BPTMC > BPF > BPS). It is noteworthy that BPAF exhibited stronger or similarly potent endocrine-disrupting activities compared to BPA. Our results provide new insights into these less-studied endocrine-disrupting activities of environmentally relevant bisphenols and may be useful in prioritizing those compounds that deserve further attention in environmental monitoring and eco-toxicological research.


Subject(s)
Environmental Pollutants , Prealbumin , Benzhydryl Compounds/analysis , Czech Republic , Norway , Phenols , Prealbumin/genetics
14.
Environ Pollut ; 269: 116121, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33272798

ABSTRACT

POCIS is the most widely applied passive sampler of polar organic substances, because it was one of the first commercially available samplers for that purpose on the market, but also for its applicability for a wide range of substances and conditions. Its main weakness is the variability of sampling performance with exposure conditions. In our study we took a pragmatic approach and performed in situ calibration for a set of 76 pharmaceuticals and their metabolites in five sampling campaigns in surface water, covering various temperature and flow conditions. In individual campaigns, RS were calculated for up to 47 compounds ranging from 0.01 to 0.63 L d-1, with the overall median value of 0.10 L d-1. No clear changes of RS with water temperature or discharge could be found for any of the investigated substances. The absence of correlation of experimental RS with physical-chemical properties in combination with the lack of mechanistic understanding of compound uptake to POCIS implies that practical estimation of aqueous concentrations from uptake in POCIS depends on compound-specific experimental calibration data. Performance of POCIS was compared with grab sampling of water in seven field campaigns comprising multiple sampling sites, where sampling by both methods was done in parallel. The comparison showed that for 25 of 36 tested compounds more than 50% of POCIS-derived aqueous concentrations did not differ from median of grab sampling values more than by a factor of 2. Further, for 30 of 36 compounds, more than 80% of POCIS data did not differ from grab sampling data more than by a factor of 5. When accepting this level of accuracy, in situ derived sampling rates are sufficiently robust for application of POCIS for identification of spatial and temporal contamination trends in surface waters.


Subject(s)
Pharmaceutical Preparations , Water Pollutants, Chemical , Calibration , Environmental Monitoring , Organic Chemicals , Water Pollutants, Chemical/analysis
15.
Environ Pollut ; 268(Pt A): 115888, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33158621

ABSTRACT

With increasing population growth and climate change, de facto reuse practices are predicted to increase globally. We investigated a longitudinal gradient within the Uhlava River, a representative watershed, where de facto reuse is actively occurring, during Fall and Spring seasons when instream flows vary. We observed human pharmaceutical levels in the river to continuously increase from the mountainous areas upstream to downstream locations and a potable intake location, with the highest concentrations found in small tributaries. Significant relationship was identified between mass flow of pharmaceuticals and the size of human populations contributing to wastewater treatment plant discharges. Advanced ozonation and granular activated carbon filtration effectively removed pharmaceuticals from potable source waters. We observed a higher probability of encountering a number of targeted pharmaceuticals during colder Spring months when stream flows were elevated compared to warmer conditions with lower flows in the Fall despite a dilution paradigm routinely applied for surface water quality assessment and management efforts. Such observations translated to greater water quality hazards during these higher Spring flows. Future water monitoring efforts should account for periods when higher chemical uses occur, particularly in the face of climate change for regions experiencing population growth and de facto reuse.


Subject(s)
Pharmaceutical Preparations , Water Pollutants, Chemical , Water Purification , Humans , Seasons , Wastewater , Water Pollutants, Chemical/analysis , Water Quality
16.
Environ Sci Technol ; 54(16): 10039-10048, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32806906

ABSTRACT

Streams and rivers metabolize dissolved organic matter (DOM). Although most DOM compounds originate from natural sources, recreational use of rivers increasingly introduces chemically distinct anthropogenic DOM. So far, the ecological impact of this DOM source is not well understood. Here, we show that a large music festival held adjacent to the Traisen River in Austria increased the river's dissolved organic carbon (DOC) concentration from 1.6 to 2.1 mg L-1 and stream ecosystem respiration from -3.2 to -4.5 mg L-1. The DOC increase was not detected by sensors continuously logging absorbance spectra, thereby challenging their applicability for monitoring. However, the fluorescence intensity doubled during the festival. Using parallel factor analysis, we were able to assign the increase in fluorescence intensity to the chemically stable UV-B filter phenylbenzimidazole sulfonic acid, indicating organic compounds in sunscreen and other personal care products as sources of elevated DOC. This observation was confirmed by liquid chromatography coupled with mass spectrometry. The elevated respiration is probably fueled by anthropogenic DOM contained in beer and/or urine. We conclude that intense recreational use of running waters transiently increases the anthropogenic DOM load into stream ecosystems and alters the fluvial metabolism. We further propose that chemically distinct, manmade DOM extends the natural range of DOM decomposition rates in fluvial ecosystems.


Subject(s)
Carbon , Rivers , Austria , Carbon/analysis , Ecosystem , Heterotrophic Processes , Holidays
17.
J Contam Hydrol ; 234: 103680, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32682147

ABSTRACT

Sorption of pharmaceuticals, which can occur in soils, may differ when present in a soil solution as a single compound or in a solution with other pharmaceuticals. Therefore, the sorption isotherms described by the Freundlich equations were evaluated for 6 compounds, which were applied in solutions of a single pharmaceutical, two pharmaceuticals or all pharmaceuticals to seven soils. Study mainly focused on a behavior of fexofenadine and irbesartan that occurred in soils in 3 forms (cationic, zwitter-ionic or neutral, anionic). Sorption of both compounds slightly increased (in some soils) when applied together, largely increased when applied with carbamazepine (neutral), and extremely increased when applied in solutions with citalopram (strongly sorbed cation), which could be explained by a cooperative multilayer sorption on soil constituents. On the other hand, sorption of both compounds moderately decreased when applied with clindamycin (cation and neutral) or sulfamethoxazole (neutral or anion). The magnitude of an increase or decrease in the Freundlich sorption coefficient (KF) for a particular compound depended on soil conditions, a form of compound's molecule and its interaction with molecules of other compounds. Despite sorption being influenced by other compound(s) in solution, the KF coefficients evaluated for a particular compound under the different conditions were mostly correlated with the same soil properties: KF,CAR with an organic carbon content, KF,CIT and KF,CLI with a base cation saturation, KF,SUL with hydrolytic acidity, and KF,FEX and KF,IRB with sorption complex saturation.


Subject(s)
Soil Pollutants , Soil , Adsorption , Carbamazepine/analysis , Citalopram , Clindamycin , Irbesartan , Soil Pollutants/analysis , Sulfamethoxazole , Terfenadine/analogs & derivatives
18.
Water Res ; 162: 437-445, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31301473

ABSTRACT

Antibiotic resistance is an emerging global health crisis, driven largely by overuse and misuse of antibiotics. However, there are examples in which the production of these antimicrobial agents has polluted the environment with active antibiotic residues, selecting for antibiotic resistant bacteria and the genes they carry. In this work, we have used shotgun metagenomics to investigate the taxonomic structure and resistance gene composition of sludge communities in a treatment plant in Croatia receiving wastewater from production of the macrolide antibiotic azithromycin. We found that the total abundance of antibiotic resistance genes was three times higher in sludge from the treatment plant receiving wastewater from pharmaceutical production than in municipal sludge from a sewage treatment plant in Zagreb. Surprisingly, macrolide resistance genes did not have higher abundances in the industrial sludge, but genes associated with mobile genetic elements such as integrons had. We conclude that at high concentrations of antibiotics, selection may favor taxonomic shifts towards intrinsically resistant species or strains harboring chromosomal resistance mutations rather than acquisition of mobile resistance determinants. Our results underscore the need for regulatory action also within Europe to avoid release of antibiotics into the environment.


Subject(s)
Microbiota , Wastewater , Anti-Bacterial Agents , Croatia , Drug Resistance, Bacterial , Europe , Genes, Bacterial , Macrolides , Sewage
19.
Appl Radiat Isot ; 66(3): 310-6, 2008 Mar.
Article in English | MEDLINE | ID: mdl-17976998

ABSTRACT

The monoclonal antibody TU-20 and its scFv fragment were radiolabeled with 125 I in order to develop new imaging agents against the specific neuronal marker III beta-tubulin. The reaction via chloramine-T using thiosulfate as a stopping reductant was determined as the most convenient way for radioiodination. The preserved immunological properties of radioiodinated species were estimated by ELISA, electrophoresis, and immunohistochemistry with autoradiography. Biodistribution studies revealed a different behavior of radioiodinated TU-20 and its scFv.


Subject(s)
Antibodies, Monoclonal/chemistry , Iodine Radioisotopes/chemistry , Peripheral Nervous System Diseases/diagnostic imaging , Tubulin/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacokinetics , Autoradiography , Immunoconjugates/chemistry , Immunoconjugates/immunology , Immunoconjugates/pharmacokinetics , Immunoglobulin Fragments/chemistry , Immunoglobulin Fragments/immunology , Immunohistochemistry , Isotope Labeling , Male , Mice , Mice, Inbred C57BL , Peripheral Nervous System Diseases/metabolism , Radionuclide Imaging , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL