Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Ecol Modell ; 464: 1-15, 2022 Feb.
Article in English | MEDLINE | ID: mdl-37850033

ABSTRACT

In many ecosystems, especially aquatic ecosystems, size plays a critical role in the factors that determine an individual's ability to survive and reproduce. In aquatic ecotoxicology, size informs both realized and potential acute and chronic effects of chemical exposure. This paper demonstrates how chemical and nonchemical effects on growth, survival, and reproduction can be linked to population-level dynamics using size-structured integral projection models (IPM). The modeling approach was developed with the goals and constraints of ecological risk assessors in mind, who are tasked with estimating the effects of chemical exposures to wildlife populations in a data-limited environment. The included case study is a collection of daily time-step IPMs parameterized for the life history and annual cycle of fathead minnows (Pimephales promelas), which motivated the development of modeling techniques for seasonal, iteroparous reproduction, density dependent growth effects, and size-dependent over-winter survival. The effects of a time-variable annual chemical exposure were interpreted using a toxicokinetic-toxicodynamic model for acute survival and sub-lethal growth effects model for chronic effects and incorporated into the IPMs. This paper presents a first application of integral projection models to ecotoxicology. Our research demonstrates that size-structured IPMs provide a promising, flexible, framework for synthesizing ecotoxicologically relevant data and theory to explore the effects of chemical and nonchemical stressors and the resulting impacts on exposed populations.

2.
Environ Toxicol Chem ; 40(4): 1098-1122, 2021 04.
Article in English | MEDLINE | ID: mdl-33270248

ABSTRACT

Assessment of ecological risks of chemicals in the field usually involves complex mixtures of known and unknown compounds. We describe the use of pathway-based chemical and biological approaches to assess the risk of chemical mixtures in the Maumee River (OH, USA), which receives a variety of agricultural and urban inputs. Fathead minnows (Pimephales promelas) were deployed in cages for 4 d at a gradient of sites along the river and adjoining tributaries in 2012 and during 2 periods (April and June) in 2016, in conjunction with an automated system to collect composite water samples. More than 100 industrial chemicals, pharmaceuticals, and pesticides were detected in water at some of the study sites, with the greatest number typically found near domestic wastewater treatment plants. In 2016, there was an increase in concentrations of several herbicides from April to June at upstream agricultural sites. A comparison of chemical concentrations in site water with single chemical data from vitro high-throughput screening (HTS) assays suggested the potential for perturbation of multiple biological pathways, including several associated with induction or inhibition of different cytochrome P450 (CYP) isozymes. This was consistent with direct effects of water extracts in an HTS assay and induction of hepatic CYPs in caged fish. Targeted in vitro assays and measurements in the caged fish suggested minimal effects on endocrine function (e.g., estrogenicity). A nontargeted mass spectroscopy-based analysis suggested that hepatic endogenous metabolite profiles in caged fish covaried strongly with the occurrence of pesticides and pesticide degradates. These studies demonstrate the application of an integrated suite of measurements to help understand the effects of complex chemical mixtures in the field. Environ Toxicol Chem 2021;40:1098-1122. © 2020 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.


Subject(s)
Cyprinidae , Water Pollutants, Chemical , Animals , Complex Mixtures , Environmental Monitoring , Rivers , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL