Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters








Database
Language
Publication year range
1.
Anal Methods ; 16(27): 4607-4618, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38920251

ABSTRACT

Pteridines are important low molecular weight biomarkers used in the diagnostics of inflammation, oxidative stress, phenylketonuria, cancer, etc. In this experimental study, we present a simple and selective approach to determine pteridines (pterin, leucopterin and folic acid) and nucleobase guanine concentration using luminescent gold clusters stabilized by aromatic amino acids. We synthesized several new gold clusters (AA-Au NCs) stabilized by various aromatic amino acids - 3,4-dihydroxy-L-phenylalanine (DOPA), L-tryptophan (Trp), L-tyrosine (Tyr) and L-phenylalanine (Phe), emitting in the violet-green spectral range. Their luminescence appeared to be sensitive to the presence of pterin, leucopterin, folic acid and guanine depending on the stabilizing matrix. Thus, a facile and cost-effective approach for the detection of pteridines is proposed. AA-Au NC-based sensors work according to "turn-off" and "turn-on" mechanisms. The possible physical origins of their luminescence quenching and enhancement are discussed.


Subject(s)
Gold , Pterins , Pterins/chemistry , Gold/chemistry , Luminescent Measurements/methods , Guanine/chemistry , Luminescence , Amino Acids/chemistry , Pteridines/chemistry , Metal Nanoparticles/chemistry
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 299: 122810, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37182251

ABSTRACT

L-DOPA, or l-3,4-dihydroxyphenylalanine is an aromatic amino acid, which plays a significant role in human metabolism as a precursor of important neurotransmitters. We develop a fast and simple colorimetric method for the detection of L-DOPA in biological fluids. The method is based on the reduction of silver ions with L-DOPA and the subsequent formation of L-DOPA stabilized silver nanoparticles (Ag NPs). In this novel approach, L-DOPA works as both reducing and stabilizing agent, which provides selectivity and simplifies the procedure. HR-TEM images show very narrow Ag NPs distribution with an average size of 24 nm. Such sensor design is suggested for the first time. We also calculate vertical ionization potential, vertical electron affinity, and Gibbs free energy change of different ionic forms of L-DOPA and amino acids at the M06-2X/def2-TZVP level for the gas phase in comparison with that of silver. A model of silver ions reduction by aromatic amino acids is proposed: the ionic forms with charge -1 are suggested to reduce silver ions. High selectivity against aromatic amino acids, dopamine and serotonin is achieved by tuning pH and involving two L-DOPA forms with charged both hydroxyphenolate and carboxylate groups in the stabilization of uniform-sized Ag NPs. The method is applicable for the determination of L-DOPA in human serum with the 50 nM limit of detection and the linear range up to 5 µM. Ag NPs formation and coloring the solution proceeds in a few minutes. The suggested colorimetric method has potential application in clinical trials.


Subject(s)
Levodopa , Metal Nanoparticles , Humans , Metal Nanoparticles/chemistry , Silver/chemistry , Colorimetry/methods
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 298: 122796, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37156175

ABSTRACT

In this experimental study, we developed a simple and selective approach to determine the concentrations of human serum albumin (HSA) and total amount of immunoglobulins (Ig) in real human serum (HS) sample using luminescent gold nanoclusters (Au NCs). In doing so, Au NCs were grown directly on the HS proteins without any sample pretreatment. We synthesized Au NCs on HSA and Ig and studied their photophysical properties. Using combined fluorescent and colorimetric assay we were able to obtain protein concentrations with a high degree of accuracy relative to techniques currently used in clinical diagnostics. We used method of standard additions to determine both HSA and Ig concentrations in HS by the Au NCs absorbance and fluorescence signals. A simple and cost-effective method developed in this work represents an excellent alternative to the techniques currently used in clinical diagnostics.


Subject(s)
Gold , Metal Nanoparticles , Humans , Spectrometry, Fluorescence/methods , Immunoglobulins , Serum Albumin, Human , Coloring Agents
4.
Nanoscale Adv ; 1(9): 3579-3583, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-36133554

ABSTRACT

In this experimental study fluorescent silver clusters on a tRNA matrix were synthesized for the first time. Two types of fluorescent complexes emitting in the green (550 nm) and red (635 nm) regions of the visible spectrum were obtained. Using FTIR spectroscopy, we identified possible binding sites for the clusters, which appeared to be within the helical regions of tRNA. It was also shown that tRNA retained its double helical structure after the cluster formation, which is essential for its functionality.

5.
J Phys Chem Lett ; 7(18): 3560-6, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27564452

ABSTRACT

Ligand-stabilized luminescent metal clusters, in particular, DNA-based Ag clusters, are now employed in a host of applications such as sensing and bioimaging. Despite their utility, the nature of their excited states as well as detailed structures of the luminescent metal-ligand complexes remain poorly understood. We apply a new joint experimental and theoretical approach based on QM/MM-MD simulations of the fluorescence excitation spectra for three Ag clusters synthesized on a 12-mer DNA. Contrary to a previously proposed "rod-like" model, our results show that (1) three to four Ag atoms suffice to form a partially oxidized nanocluster emitting in visible range; (2) charge transfer from Ag cluster to DNA contributes to the excited states of the complexes; and (3) excitation spectra of the clusters are strongly affected by the bonding of Ag atoms to DNA bases. The presented approach can also provide a practical way to determine the structure and properties of other luminescent metal clusters.


Subject(s)
Coordination Complexes/chemistry , DNA/chemistry , Nanotubes/chemistry , Silver/chemistry , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL