Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
J Clin Med ; 13(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39124620

ABSTRACT

Background: Recent publications underscore the need for updated recommendations addressing less radical surgery for <2 cm tumors, induction chemotherapy, or immunotherapy for locally advanced stages of cervical cancer, as well as for the systemic therapy for recurrent or metastatic cervical cancer. Aim: To summarize the current evidence for the diagnosis, treatment, and follow-up of cervical cancer and provide evidence-based clinical practice recommendations. Methods: Developed according to AGREE II standards, the guidelines classify scientific evidence based on the Agency for Health Technology Assessment and Tariff System criteria. Recommendations are graded by evidence strength and consensus level from the development group. Key Results: (1) Early-Stage Cancer: Stromal invasion and lymphovascular space involvement (LVSI) from pretreatment biopsy identify candidates for surgery, particularly for simple hysterectomy. (2) Surgical Approach: Minimally invasive surgery is not recommended, except for T1A, LVSI-negative tumors, due to a reduction in life expectancy. (3) Locally Advanced Cancer: concurrent chemoradiation (CCRT) followed by brachytherapy (BRT) is the cornerstone treatment. Low-risk patients (fewer than two metastatic nodes or FIGO IB2-II) may consider induction chemotherapy (ICT) followed by CCRT and BRT after 7 days. High-risk patients (two or more metastatic nodes or FIGO IIIA, IIIB, and IVA) benefit from pembrolizumab with CCRT and maintenance therapy. (4) Metastatic, Persistent, and Recurrent Cancer: A PD-L1 status from pretreatment biopsy identifies candidates for Pembrolizumab with available systemic treatment, while triplet therapy (Atezolizumab/Bevacizumab/chemotherapy) becomes a PD-L1-independent option. Conclusions: These evidence-based guidelines aim to improve clinical outcomes through precise treatment strategies based on individual risk factors, predictors, and disease stages.

2.
Diseases ; 12(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39057113

ABSTRACT

BACKGROUND: SARS-CoV-2 can damage human placentas, leading to pregnancy complications, such as preeclampsia and premature birth. This study investigates the histopathological changes found in COVID-19-affected placentas. MATERIALS AND METHODS: This study included 23 placentas from patients with active COVID-19 during delivery and 22 samples from patients without COVID-19 infection in their medical history. The samples underwent histopathological examination for pathology, such as trophoblast necrosis, signs of vessel damage, or fetal vascular malperfusion. RESULTS: Newborns from the research group have lower weights and Apgar scores than healthy newborns. In the COVID-19 group, calcifications and collapsed intervillous space were more frequent, and inflammation was more severe than in the healthy group. At the same time, the placenta of SARS-CoV-2-positive patients showed signs of accelerated vascular maturation. Trophoblast necrosis was found only in the placentas of the research group. The expression of CD68+ was elevated in the COVID-19 cohort, suggesting that macrophages constituted a significant part of the inflammatory infiltrate. The increase in lymphocyte B markers was associated with placental infarctions, while high levels of CD3+, specific for cytotoxic T lymphocytes, correlated with vascular injury. CONCLUSIONS: SARS-CoV-2 is associated with pathological changes in the placenta, including trophoblast necrosis, calcification, and accelerated villous maturation. Those changes appear to be driven by T cells and macrophages, whose increased expression reflects ongoing histiocytic intervillositis in the placenta.

3.
Med Oncol ; 41(8): 187, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918274

ABSTRACT

Glioblastoma (GBM) is the most common malignant brain tumor, which, despite significant progress made in the last years in the field of neuro-oncology, remains an incurable disease. GBM has a poor prognosis with a median survival of 12-15 months, and its aggressive clinical course is related to rapid growth, extensive infiltration of adjacent tissues, resistance to chemotherapy, radiotherapy and immunotherapy, and frequent relapse. Currently, several molecular biomarkers are used in clinical practice to predict patient prognosis and response to treatment. However, due to the overall unsatisfactory efficacy of standard multimodal treatment and the remaining poor prognosis, there is an urgent need for new biomarkers and therapeutic strategies for GBM. Recent evidence suggests that GBM tumorigenesis is associated with crosstalk between cancer, immune and stromal cells mediated by various cytokines. One of the key factors involved in this process appears to be interleukin-17 (IL-17), a pro-inflammatory cytokine that is significantly upregulated in the serum and tissue of GBM patients. IL-17 plays a key role in tumorigenesis, angiogenesis, and recurrence of GBM by activating pro-oncogenic signaling pathways and promoting cell survival, proliferation, and invasion. IL-17 facilitates the immunomodulation of the tumor microenvironment by promoting immune cells infiltration and cytokine secretion. In this article we review the latest scientific reports to provide an update on the role of IL-17 role in tumorigenesis, tumor microenvironment, diagnosis, prognosis, and treatment of GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Interleukin-17 , Humans , Glioblastoma/therapy , Glioblastoma/metabolism , Glioblastoma/immunology , Glioblastoma/pathology , Brain Neoplasms/therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/immunology , Interleukin-17/metabolism , Tumor Microenvironment/immunology , Biomarkers, Tumor/metabolism , Prognosis
4.
Biomark Insights ; 19: 11772719241257739, 2024.
Article in English | MEDLINE | ID: mdl-38911905

ABSTRACT

Background: Colorectal cancer (CRC) prognosis is determined by the disease stage with low survival rates for advanced stages. Current CRC screening programs are mainly using colonoscopy, limited by its invasiveness and high cost. Therefore, non-invasive, cost-effective, and accurate alternatives are urgently needed. Objective and design: This retrospective multi-center plasma proteomics study was performed to identify potential blood-based biomarkers in 36 CRC patients and 26 healthy volunteers by high-resolution mass spectrometry proteomics followed by the validation in an independent CRC cohort (60 CRC patients and 44 healthy subjects) of identified selected biomarkers. Results: Among the 322 identified plasma proteins, 37 were changed between CRC patients and healthy volunteers and were associated with the complement cascade, cholesterol metabolism, and SERPIN family members. Increased levels in CRC patients of the complement proteins C1QB, C4B, and C5 as well as pro-inflammatory proteins, lipopolysaccharide-binding protein (LBP) and serum amyloid A4, constitutive (SAA4) were revealed for first time. Importantly, increased level of C5 was verified in an independent validation CRC cohort. Increased C4B and C8A levels were correlated with cancer-associated inflammation and CRC progression, while cancer-associated inflammation was linked to the acute-phase reactant leucine-rich alpha-2-glycoprotein 1 (LRG1) and ceruloplasmin. Moreover, a 4-protein signature including C4B, C8A, apolipoprotein C2 (APO) C2, and immunoglobulin heavy constant gamma 2 was changed between early and late CRC stages. Conclusion: Our results suggest that C5 could be a potential biomarker for CRC diagnosis. Further validation studies will aid the application of these new potential biomarkers to improve CRC diagnosis and patient care.

5.
Int J Cancer ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850108

ABSTRACT

Despite advances in early detection and treatment strategies, breast cancer recurrence and mortality remain a significant health issue. Recent insights suggest the prognostic potential of microscopically healthy mammary gland, in the vicinity of the breast lesion. Nonetheless, a comprehensive understanding of the gene expression profiles in these tissues and their relationship to patient outcomes remain missing. Furthermore, the increasing trend towards breast-conserving surgery may inadvertently lead to the retention of existing cancer-predisposing mutations within the normal mammary gland. This study assessed the transcriptomic profiles of 242 samples from 83 breast cancer patients with unfavorable outcomes, including paired uninvolved mammary gland samples collected at varying distances from primary lesions. As a reference, control samples from 53 mammoplasty individuals without cancer history were studied. A custom panel of 634 genes linked to breast cancer progression and metastasis was employed for expression profiling, followed by whole-transcriptome verification experiments and statistical analyses to discern molecular signatures and their clinical relevance. A distinct gene expression signature was identified in uninvolved mammary gland samples, featuring key cellular components encoding keratins, CDH1, CDH3, EPCAM cell adhesion proteins, matrix metallopeptidases, oncogenes, tumor suppressors, along with crucial genes (FOXA1, RAB25, NRG1, SPDEF, TRIM29, and GABRP) having dual roles in cancer. Enrichment analyses revealed disruptions in epithelial integrity, cell adhesion, and estrogen signaling. This signature, named KAOS for Keratin-Adhesion-Oncogenes-Suppressors, was significantly associated with reduced tumor size but increased mortality rates. Integrating molecular assessment of non-malignant mammary tissue into disease management could enhance survival prediction and facilitate personalized patient care.

6.
Biomed Pharmacother ; 175: 116805, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781868

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is the most prevalent subtype of renal cancer, accounting for approximately 80% of all renal cell cancers. Due to its exceptional inter- and intratumor heterogeneity, it is highly resistant to conventional systemic therapies. Targeting the evasion of cell death, one of cancer's hallmarks, is currently emerging as an alternative strategy for ccRCC. In this article, we review the current state of apoptosis-inducing therapies against ccRCC, including antisense oligonucleotides, BH3 mimetics, histone deacetylase inhibitors, cyclin-kinase inhibitors, inhibitors of apoptosis protein antagonists, and monoclonal antibodies. Although preclinical studies have shown encouraging results, these compounds fail to improve patients' outcomes significantly. Current evidence suggests that inducing apoptosis in ccRCC may promote tumor progression through apoptosis-induced proliferation, anastasis, and apoptosis-induced nuclear expulsion. Therefore, re-evaluating this approach is expected to enable successful preclinical-to-clinical translation.


Subject(s)
Antineoplastic Agents , Apoptosis , Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/drug therapy , Apoptosis/drug effects , Kidney Neoplasms/pathology , Kidney Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Molecular Targeted Therapy
7.
Clin Transl Oncol ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769215

ABSTRACT

INTRODUCTION: Due to its lack of conventional surface receptors, triple-negative breast cancer (TNBC) is inherently resistant to most targeted therapies. MAL2 overexpression prompts endocytosis, conferring resistance to novel therapeutics. This study explores the role of MAL2 and PD-L1 in TNBC patients' prognosis. METHODS: We performed immunohistochemical analysis on 111 TNBC samples collected from 76 patients and evaluated the expression of MAL2 and PD-1. We expanded the study by including The Cancer Genome Atlas (TCGA) cohort. RESULTS: MAL2 expression did not correlate with stage, grade, tumor size, lymph node invasion, metastasis, and PD-1 expression. Patients with high MAL2 had significantly lower 5-year survival rates (71.33% vs. 89.59%, p = 0.0224). In the tissue microarray cohort (TMA), node invasions, size, recurrence, and low MAL2 (HR 0.29 [CI 95% 0.087-0.95]; p < 0.05) predicted longer patients' survival. In the TCGA cohort, patients with low MAL2 had significantly longer overall survival and disease-specific survival than patients with high MAL2. Older age and high MAL2 expression were the only independent predictors of shorter patient survival in the BRCA TCGA cohort. CONCLUSION: High MAL2 predicts unfavorable prognosis in triple-negative breast cancer, and its expression is independent of PD-1 levels and clinicopathological features of TNBC.

8.
Sci Rep ; 14(1): 9458, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38658633

ABSTRACT

Male sex is a risk factor for colorectal cancer (CRC) with higher illness burden and earlier onset. Thus, we hypothesized that loss of chromosome Y (LOY) in the tumor micro-environment (TME) might be involved in oncogenesis. Previous studies show that LOY in circulating leukocytes of aging men was associated with shorter survival and non-hematological cancer, as well as higher LOY in CD4 + T-lymphocytes in men with prostate cancer vs. controls. However, nothing is known about LOY in leukocytes infiltrating TME and we address this aspect here. We studied frequency and functional effects of LOY in blood, TME and non-tumorous tissue. Regulatory T-lymphocytes (Tregs) in TME had the highest frequency of LOY (22%) in comparison to CD4 + T-lymphocytes and cytotoxic CD8 + T-lymphocytes. LOY score using scRNA-seq was also linked to higher expression of PDCD1, TIGIT and IKZF2 in Tregs. PDCD1 and TIGIT encode immune checkpoint receptors involved in the regulation of Tregs function. Our study sets the direction for further functional research regarding a probable role of LOY in intensifying features related to the suppressive phenotype of Tregs in TME and consequently a possible influence on immunotherapy response in CRC patients.


Subject(s)
Colorectal Neoplasms , Liver Neoplasms , T-Lymphocytes, Regulatory , Tumor Microenvironment , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/genetics , Tumor Microenvironment/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Male , Liver Neoplasms/immunology , Liver Neoplasms/secondary , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Aged , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/genetics , Middle Aged , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Female , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Ikaros Transcription Factor/genetics , Ikaros Transcription Factor/metabolism
9.
Cureus ; 16(2): e55029, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38550491

ABSTRACT

Bronchogenic cysts, benign congenital malformations resulting from abnormal tracheobronchial tree budding, primarily manifest in the mediastinum, with retroperitoneal occurrence being exceedingly rare. Typically incidental findings on imaging, and their diagnosis pose challenges, particularly when malignancy is suspected. We present a case involving a 55-year-old woman diagnosed with chronic back pain. Physical examination revealed a painful mass in the left renal region. Subsequent MRI identified a smooth mass in the left adrenal gland without infiltration of surrounding structures. Laparoscopic surgery successfully removed the lesion without complications. Pathomorphological examination confirmed a gelatinous-filled cyst, identified as a retroperitoneal bronchogenic cyst in the left adrenal gland. Increasing reports of retroperitoneal bronchogenic cysts contribute to a better understanding of their characteristics, aiding preoperative diagnosis. However, given potential malignancy and definitive diagnosis through histopathological examination, surgical resection remains the preferred method.

10.
Article in English | MEDLINE | ID: mdl-38299561

ABSTRACT

The widespread occurrence of SARS-CoV-2 infections and the diverse range of symptoms have placed significant strain on healthcare systems worldwide. Pregnancy has also been affected by COVID-19, with an increased risk of complications and unfavorable outcomes for expectant mothers. Multiple studies indicate that SARS-CoV-2 can infiltrate the placenta, breach its protective barrier, and infect the fetus. Although the precise mechanisms of intrauterine transmission remain unclear, factors such as perinatal infection, macrophages, sexual intercourse, and the virus' interaction with host angiotensin-converting enzyme 2 (ACE2) and neuropilin-1 (NRP-1) proteins appear to play a role in this process. The integrity of the placental barrier fluctuates throughout pregnancy and appears to influence the likelihood of fetal transmission. The expression of placental cell receptors, like ACE2, changes during pregnancy and in response to placental damage. However, due to the consistent presence of others, such as NRP-1, SARS-CoV-2 may potentially enter the fetus at different stages of pregnancy. NRP-1 is also found in macrophages, implicating maternal macrophages and Hofbauer cells as potential routes for viral transmission. Our current understanding of SARS-CoV-2's vertical transmission pathways remains limited. Some researchers question the ACE2-associated transmission model due to the relatively low expression of ACE2 in the placenta. Existing studies investigating perinatal transmission and the impact of sexual intercourse have either involved small sample sizes or lacked statistical significance. This review aims to explore the current state of knowledge regarding the potential mechanisms of COVID-19 vertical transmission, identifying areas where further research is needed to fill the gaps in our understanding.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pregnancy , Female , Placenta , COVID-19/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Infectious Disease Transmission, Vertical , Peptidyl-Dipeptidase A/metabolism
11.
Hum Cell ; 37(1): 101-120, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37874534

ABSTRACT

Circulating tumor cells (CTCs) are cancer cells that detach from the primary tumor, enter the bloodstream or body fluids, and spread to other body parts, leading to metastasis. Their presence and characteristics have been linked to cancer progression and poor prognosis in different types of cancer. Analyzing CTCs can offer valuable information about tumors' genetic and molecular diversity, which is crucial for personalized therapy. Epithelial-mesenchymal transition (EMT) and the reverse process, mesenchymal-epithelial transition (MET), play a significant role in generating and disseminating CTCs. Certain proteins, such as EpCAM, vimentin, CD44, and TGM2, are vital in regulating EMT and MET and could be potential targets for therapies to prevent metastasis and serve as detection markers. Several devices, methods, and protocols have been developed for detecting CTCs with various applications. CTCs interact with different components of the tumor microenvironment. The interactions between CTCs and tumor-associated macrophages promote local inflammation and allow the cancer cells to evade the immune system, facilitating their attachment and invasion of distant metastatic sites. Consequently, targeting and eliminating CTCs hold promise in preventing metastasis and improving patient outcomes. Various approaches are being explored to reduce the volume of CTCs. By investigating and discussing targeted therapies, new insights can be gained into their potential effectiveness in inhibiting the spread of CTCs and thereby reducing metastasis. The development of such treatments offers great potential for enhancing patient outcomes and halting disease progression.


Subject(s)
Neoplastic Cells, Circulating , Humans , Neoplastic Cells, Circulating/pathology , Biomarkers, Tumor/metabolism , Epithelial-Mesenchymal Transition/genetics , Tumor Microenvironment
12.
Biomol Biomed ; 24(1): 14-29, 2024 01 03.
Article in English | MEDLINE | ID: mdl-37877810

ABSTRACT

Anti-programmed cell death ligand 1 (anti-PD-L1)  immunotherapy is an increasingly crucial in cancer treatment. To date, the Federal Drug Administration (FDA) has approved four PD-L1 immunohistochemistry (IHC) staining protocols, commercially available in the form of "kits", facilitating testing for PD-L1 expression. These kits comprise four PD-L1 antibodies on two separate IHC platforms, each utilizing distinct, non-interchangeable scoring systems. Several factors, including tumor heterogeneity and the size of the tissue specimens assessed, can lead to PD-L1 status misclassification, potentially hindering the initiation of therapy. Therefore, the development of more accurate predictive biomarkers to distinguish between responders and non-responders prior to anti-PD-1/PD-L1 therapy warrants further research. Achieving this goal necessitates refining sampling criteria, enhancing current methods of PD-L1 detection, and deepening our understanding of the impact of additional biomarkers. In this article, we review potential solutions to improve the predictive accuracy of PD-L1 assessment in order to more precisely anticipate patients' responses to anti-PD-1/PD-L1 therapy, monitor disease progression and predict clinical outcomes.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/metabolism , Immunohistochemistry , B7-H1 Antigen , Biomarkers, Tumor/metabolism , Immunotherapy
13.
Clin Chim Acta ; 552: 117651, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37980974

ABSTRACT

PURPOSE: Despite its limitations, the cytology of body fluids is widely used in diagnosing neoplastic cells. Flow cytometry detects and identifies individual cells, enabling the detection of circulating tumor cells and facilitating diagnosis. This study compared the diagnostic utility of flow cytometry and cytology for detecting cancer cells in peritoneal and pleural fluids. METHODOLOGY: We used flow cytometry and cytology to examine 119 pleural and peritoneal effusions received for routine screening. Antibodies against clusters of differentiation 45 (CD45), 14 (CD14), and Epithelial cell adhesion molecule (EpCAM) were used to detect malignant cells. Based on combined clinical and diagnostic information, 37 fluid specimens were malignant, and 77 were benign. RESULTS: Flow cytometry correctly identified 34 cancers, while cytology identified 26 cancers (sensitivity 91.89 % vs. 70.27, respectively). Both methods had equal specificity (98.7 %). At a cut-off of > 0.29 % EpCAM(+) cells to all cells in the samples, flow cytometry accurately detected cancer cells, achieving 89.2 % sensitivity, 90.9 % specificity, and an AUC of 0.959 (p < 0.001). CONCLUSION: Flow cytometry improves the detection of epithelial cancer cells in peritoneal and pleural fluids compared to conventional cytology. Due to similar specificity and higher sensitivity, flow cytometry offers a promising alternative to cytology for patient screening.


Subject(s)
Neoplastic Cells, Circulating , Pleural Effusion, Malignant , Humans , Epithelial Cell Adhesion Molecule/metabolism , Neoplastic Cells, Circulating/pathology , Flow Cytometry/methods , Ascitic Fluid , Pleural Effusion, Malignant/diagnosis
14.
Clin Exp Med ; 23(8): 5121-5127, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37804360

ABSTRACT

PD-L1 expression is known to predict the benefits of immune checkpoint inhibitor therapy for triple-negative breast cancer (TNBC). We examined whether the PD-L1 expression evaluated in biopsy specimens accurately reflects its expression in the whole tumor. Immunohistochemistry was performed on 81 biopsy and resection specimens from patients with TNBC to determine their PD-L1 status. We found PD-L1-positive tumors in 23 (28%) biopsy specimens and primarily PD-L1-negative tumors in 58 (72%). The PD-L1 status was reevaluated in matching postoperative specimens of primarily PD-L1-negative tumors. Of them, 31% (18/58) were positive, whereas 69% (40/58) were negative. Considering the pre- and postoperative analyses, 41 (51%) patients had PD-L1-positive tumors, while 40 had PD-L1-negative tumors. We found 18 (22%) more PD-L1-positive tumors while examining the resection specimens compared to biopsies, and the difference was statistically significant (p = 0.0038). Diagnostic biopsies do not fully reflect the PD-L1 expression in TNBC. Our results suggest that a significant subset of TNBC patients may be misclassified as PD-L1-negative and disqualified from anti-PD-L1 therapy.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/diagnosis , Triple Negative Breast Neoplasms/metabolism , B7-H1 Antigen/metabolism , Immunohistochemistry , Biopsy
15.
Cells ; 12(10)2023 05 12.
Article in English | MEDLINE | ID: mdl-37408208

ABSTRACT

Prostate cancer remains a leading cause of cancer-related death in men worldwide. Recent research advances have emphasized the critical roles of mismatch repair (MMR) and double-strand break (DSB) in prostate cancer development and progression. Here, we provide a comprehensive review of the molecular mechanisms underlying DSB and MMR defects in prostate cancer, as well as their clinical implications. Furthermore, we discuss the promising therapeutic potential of immune checkpoint inhibitors and PARP inhibitors in targeting these defects, particularly in the context of personalized medicine and further perspectives. Recent clinical trials have demonstrated the efficacy of these novel treatments, including Food and Drugs Association (FDA) drug approvals, offering hope for improved patient outcomes. Overall, this review emphasizes the importance of understanding the interplay between MMR and DSB defects in prostate cancer to develop innovative and effective therapeutic strategies for patients.


Subject(s)
DNA Mismatch Repair , Prostatic Neoplasms , Male , Humans , DNA Repair , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use
16.
Front Oncol ; 13: 1158261, 2023.
Article in English | MEDLINE | ID: mdl-37228491

ABSTRACT

Introduction: Colorectal cancer (CRC) is the third most common malignancy and the second leading cause of death worldwide. Efficient non-invasive blood-based biomarkers for CRC early detection and prognosis are urgently needed. Methods: To identify novel potential plasma biomarkers, we applied a proximity extension assay (PEA), an antibody-based proteomics strategy to quantify the abundance of plasma proteins in CRC development and cancer-associated inflammation from few µL of plasma sample. Results: Among the 690 quantified proteins, levels of 202 plasma proteins were significantly changed in CRC patients compared to age-and-sex-matched healthy subjects. We identified novel protein changes involved in Th17 activity, oncogenic pathways, and cancer-related inflammation with potential implications in the CRC diagnosis. Moreover, the interferon γ (IFNG), interleukin (IL) 32, and IL17C were identified as associated with the early stages of CRC, whereas lysophosphatidic acid phosphatase type 6 (ACP6), Fms-related tyrosine kinase 4 (FLT4), and MANSC domain-containing protein 1 (MANSC1) were correlated with the late-stages of CRC. Discussion: Further study to characterize the newly identified plasma protein changes from larger cohorts will facilitate the identification of potential novel diagnostic, prognostic biomarkers for CRC.

17.
Arch Med Sci ; 19(2): 499-506, 2023.
Article in English | MEDLINE | ID: mdl-37034507

ABSTRACT

Introduction: The purpose of this research was to explore the correlation between Gleason score and pattern and the expression of the MLH1, MSH2, MDC1, TP53BP1 proteins in prostate cancer (PC). Prostate cancer development is related to errors in DNA, among others double-strand breaks (DSB) and changes in the base sequence of the DNA. These errors should be repaired through mismatch (MMR) or DSB repair proteins such as MSH2, MLH1, MDC1 and TP53BP1. Material and methods: A total of 500 prostate cancer specimens were recruited in this study. From among all gathered specimens the 52 most suitable cases were selected. The expression of examined proteins was detected by immunohistochemistry, and its correlation with the Gleason score and pattern were further analyzed through standard statistical algorithms. Results: The results show a significant correlation between Gleason pattern and the nuclear expression of the MSH2 protein and the cytoplasmic expression of the MLH1 protein. Gleason score significantly correlates with the nuclear and the cytoplasmic expression of the MSH2 protein and the cytoplasmic expression of the MDC1 protein. There is no correlation between the nuclear or cytoplasmic expression of the TP53BP1 protein and Gleason pattern or score. Conclusions: Our study suggests that the aberration in the MMR repair mechanism may be significantly more important regarding the grading among PC cells in comparison to the impact of alterations in the DSB repair mechanism. The lack of correlation between expression of the TP53BP1 protein and Gleason pattern and Gleason score suggests that the radiation resistance of PC is independent of alterations connected with TP53BP1.

18.
Sci Rep ; 13(1): 6991, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37117538

ABSTRACT

Although infection with severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) does not appear to be as serious a threat to public health as it was in 2020-2021, the increased transmissibility of multiple Omicron descendants may constitute a continuous challenge for health care systems, and reliable detection of new variants is still imperative. This study evaluates the performance of three SARS-CoV-2 diagnostic tests: Novel Coronavirus (2019-nCoV) Real Time Multiplex RT-PCR Kit (Liferiver); Vitassay qPCR SARS-CoV-2 (Vitaassay) and TaqPath COVID­19 CE-IVD RT-PCR Kit (Thermo Fisher Scientific). The analytical sensitivity of the assays as well as their specificity were determined with the use of synthetic nucleic acid standards and clinical samples. All assays appeared to be 100% specific for SARS-CoV-2 RNA in general and the Omicron variant in particular. The LOD determined during this validation was 10 viral RNA copies/reaction for Liferiver and TaqPath and 100 viral RNA copies for Vitassay. We cannot exclude that the LOD for the Vitassay might be lower and close to the manufacturer's declared value of ≥ 20 genome copies/reaction, as we obtained 90% positive results for 10 viral RNA copies/reaction. Mean Ct values at the concentration of 10 viral RNA copies/reaction for the Liferiver, Vitassay and TaqPath kits (35, 37 and 33, respectively) were significantly lower than the cutoff values declared by the manufacturers (≤ 41, ≤ 40 and ≤ 37, respectively). We suggest reporting outcomes based on LOD and cutoff Ct values determined during internal validation rather than those declared by the assays' producers.


Subject(s)
COVID-19 , Mustelidae , Animals , SARS-CoV-2/genetics , COVID-19/diagnosis , RNA, Viral/genetics , Diagnostic Tests, Routine , Sensitivity and Specificity , COVID-19 Testing
19.
Anticancer Res ; 43(4): 1503-1511, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36974831

ABSTRACT

BACKGROUND/AIM: Renal cell carcinoma (RCC) continues to pose a challenge due to our limited understanding of its underlying pathophysiology. Aconitase 2 (ACO2) is a mitochondrial Fe-S cluster enzyme that catalyzes the stereospecific isomerization of citrate to isocitrate in the second step of the Krebs cycle. We investigated the relationship between ACO2 protein expression and the clinical course of RCC. MATERIALS AND METHODS: Tumor samples were evaluated in a commercial tissue microarray for ACO2 expression using the H-score. The tissue microarrays contained a total of 96 cores from primary tumors, matched metastases, and matched adjacent tissues derived from 32 patients with RCC. The mean follow-up was 82.74 months. Correlation analysis of clinicopathological data and survival was performed. Expression levels of ACO2 mRNA were compared using publicly available data. RESULTS: All the tissue samples showed cytoplasmic ACO2 expression, with median H-scores of 139.7, 130.3 and 166.7 in primary tumor, metastatic tissue, and matched control tissue, respectively. A significantly higher ACO2 expression was found in normal tissues compared to primary and metastatic RCC. The analysis demonstrated a significantly positive correlation between ACO2 expression in primary tumors and their metastases. The results also showed a significant correlation between the expression of ACO2 and worse overall survival among patients with RCC. CONCLUSION: ACO2 may be used as a prognostic factor in RCC. Significant alterations in ACO2 expression are thought to occur in the early stages of RCC carcinogenesis. Considering the physiological role of ACO2, its dysregulation may constitute an adaptive trait of RCC for escaping the equilibrium phase of immunoediting.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/pathology , Prognosis , Biomarkers, Tumor/metabolism , RNA, Messenger , Aconitate Hydratase
20.
Clin Transl Oncol ; 25(3): 830-840, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36374405

ABSTRACT

PURPOSE: The mutation of p53 is considered a pivotal step in bladder cancer pathogenesis. Recently, distinct interactions between p53 and CDK9, a transcription regulator, have been described. In this work, we explored the prognostic role of p53 expression and evaluated its associations with CDK9 in urothelial carcinoma. MATERIALS AND METHODS: The research group consisted of 67 bladder cancer samples and 32 normal urothelial mucosa samples. All specimens were analyzed using ImageJ and the IHC profiler plugin. To validate the results, 406 cases from The Cancer Genome Atlas database were analyzed. RESULTS: P53 and CDK9 are overexpressed in urothelial cancer tissues when compared to normal urothelial tissues (p < 0.05). High p53 expression was observed in metastatic tumors and tumors with high CDK9 expression (p < 0,05). High p53 expression was predictive for shorter survival in patients with non-muscle-invasive bladder cancer (HR = 0.107 [0.012-0.96]; p = 0.046) but did not correlate with prognosis in the muscle-invasive group. In high CDK9 cancers, high p53 expression correlated with the occurrence of high-grade and muscle-invasive tumors (p < 0.05). CONCLUSION: High expression of p53 correlates with unfavorable clinical features of bladder cancer. CDK9 is associated with the expression of p53, possibly through interactions with p53 inhibitors. Since the blockade of CDK9 in other malignancies reactivates wild-p53 activity, confirming the crosstalk between p53 and CDK9 in bladder cancer may be another step to explain the mechanism of tumor progression in its early stages.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/pathology , Prognosis , Tumor Suppressor Protein p53/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cyclin-Dependent Kinase 9/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL