Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters








Database
Language
Publication year range
1.
Eur Phys J Plus ; 136(4): 472, 2021.
Article in English | MEDLINE | ID: mdl-33968561

ABSTRACT

The LABEC laboratory, the INFN ion beam laboratory of nuclear techniques for environment and cultural heritage, located in the Scientific and Technological Campus of the University of Florence in Sesto Fiorentino, started its operational activities in 2004, after INFN decided in 2001 to provide our applied nuclear physics group with a large laboratory dedicated to applications of accelerator-related analytical techniques, based on a new 3 MV Tandetron accelerator. The new accelerator greatly improved the performance of existing Ion Beam Analysis (IBA) applications (for which we were using since the 1980s an old single-ended Van de Graaff accelerator) and in addition allowed to start a novel activity of Accelerator Mass Spectrometry (AMS), in particular for 14C dating. Switching between IBA and AMS operation became very easy and fast, which allowed us high flexibility in programming the activities, mainly focused on studies of cultural heritage and atmospheric aerosol composition, but including also applications to biology, geology, material science and forensics, ion implantation, tests of radiation damage to components, detector performance tests and low-energy nuclear physics. This paper describes the facilities presently available in the LABEC laboratory, their technical features and some success stories of recent applications.

2.
Sci Rep ; 7(1): 385, 2017 03 24.
Article in English | MEDLINE | ID: mdl-28341859

ABSTRACT

Ion irradiation is a widely employed tool to fabricate diamond micro- and nano-structures for applications in integrated photonics and quantum optics. In this context, it is essential to accurately assess the effect of ion-induced damage on the variation of the refractive index of the material, both to control the side effects in the fabrication process and possibly finely tune such variations. Several partially contradictory accounts have been provided on the effect of the ion irradiation on the refractive index of single crystal diamond. These discrepancies may be attributable to the fact that in all cases the ions are implanted in the bulk of the material, thus inducing a series of concurrent effects (volume expansion, stress, doping, etc.). Here we report the systematic characterization of the refractive index variations occurring in a 38 µm thin artificial diamond sample upon irradiation with high-energy (3 MeV and 5 MeV) protons. In this configuration the ions are fully transmitted through the sample, while inducing an almost uniform damage profile with depth. Therefore, our findings conclusively identify and accurately quantify the change in the material polarizability as a function of ion beam damage as the primary cause for the modification of its refractive index.


Subject(s)
Diamond/chemistry , Diamond/radiation effects , Optical Phenomena , Optics and Photonics , Protons , Refractometry
3.
Phys Med ; 17 Suppl 1: 249-54, 2001.
Article in English | MEDLINE | ID: mdl-11776989

ABSTRACT

The radiation absorbed by astronauts during interplanetary flights is mainly due to cosmic rays of solar origin (SCR). In the most powerful solar flares the dose absorbed in few hours can exceed that cumulated in one year of exposition to the galactic component of cosmic rays (GCR). At energies above the minimum one needed to cross the walls of the spaceship there are extrapolations and guesses, but no data, on the angular distribution of SCR's, an information that is necessary for establishing whatever defence strategy. It was therefore proposed of sending to Mars a measurement device, that should continuously collect data during the travel, and possibly also in the orbit around Mars and on the Mars surface. The device should identify the particle and privilege the completeness in the measurement of its parameters. In fact the high energy electrons travel at speed of the light and could be used in the and future dangerous proton component. Also the much less abundant but individually more dangerous ions should be identified. The device should indeed include a magnetic spectrometer and a high granularity range telescope, and a good time of flight measurement. ASI is supporting an assessment study of a possible mission of such a device on board of the 2005 probe to Mars. A parallel technical study is also in progress to define the workable techniques and the possible configurations of a system of magnetic lenses for protecting the crew of a spaceship.


Subject(s)
Magnetics , Protons , Radiation Protection/instrumentation , Solar Activity , Space Flight/instrumentation , Spacecraft/instrumentation , Cosmic Radiation , Extraterrestrial Environment , Humans , Mars , Radiation Monitoring/instrumentation
4.
Nucl Instrum Methods Phys Res A ; 443(2-3): 254-63, 2000 Apr 01.
Article in English | MEDLINE | ID: mdl-11543201

ABSTRACT

During the interplanetary flights the crewmembers will be exposed to cosmic ray radiation with great risk for their health. The absorbed dose due to CR depends on the galactic (GCR) or solar (SCR) origin. GCRs are isotropic and relatively high in energy and deliver a dose nearly constant with time that can be reduced only by means of "heavy" passive protection. The outer walls of the spacecraft usually shield the SCRs up to a few tens of MeV, but during some exceptional solar bursts, a great number of particles, mainly protons, are ejected at higher energies. In this case the dose delivered in a few hours by a solar burst can easily exceed 1 year cumulated dose by GCRS. The high-energy component of SCRs is quasi-directional so that a shielding system based on a superconductive magnetic lens can reduce the daily dose of SCRs to the level delivered by GCRS.


Subject(s)
Cosmic Radiation , Magnetics , Protons , Radiation Protection/methods , Solar Activity , Aluminum , Equipment Design , Humans , Nuclear Physics , Radiation Dosage , Radiation Protection/instrumentation , Solar System , Spacecraft/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL