Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Funct Integr Genomics ; 24(5): 165, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39294422

ABSTRACT

Cardiovascular diseases (CVDs) a major contributor to global mortality rates, with a steadily rising prevalence observed across the world. Understanding the molecular mechanisms that underlie the signaling pathways implicated in the pathogenesis of CVDs represents a salient and advantageous avenue toward the development of precision and targeted therapeutics. A recent development in CVDs research is the discovery of long non-coding RNAs (lncRNAs), which are now understood to have crucial roles in the onset and development of several pathophysiological processes. The distinct expression patterns exhibited by lncRNAs in various CVDs contexts, present a significant opportunity for their utilization as both biomarkers and targets for therapeutic intervention. Among the various identified lncRNAs, HOX antisense intergenic RNA (HOTAIR) functions as signaling molecules that are significantly implicated in the pathogenesis of cardiovascular disorders in response to risk factors. HOTAIR has been observed to circulate within the bloodstream and possesses an integral epigenetic regulatory function in the transcriptional pathways of many diseases. Recent studies have suggested that HOTAIR offers promise as a biomarker for the detection and treatment of CVDs. The investigation on HOTAIR's role in CVDs, however, is still in its early phases. The goal of the current study is to give a thorough overview of recent developments in the field of analyzing the molecular mechanism of HOTAIR in controlling the pathophysiological processes of CVDs as well as its possible therapeutic uses.


Subject(s)
Cardiovascular Diseases , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Humans , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Biomarkers/metabolism , Animals , Epigenesis, Genetic , Signal Transduction
2.
Reprod Biol ; 24(3): 100925, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39018753

ABSTRACT

Infertility is a well-known problem that arises from a variety of reproductive diseases. Until now, researchers have tried various methods to restore fertility, including medication specific to the cause, hormone treatments, surgical removals, and assisted reproductive technologies. While these methods do produce results, they do not consistently lead to fertility restoration in every instance. The use of exosome therapy has significant potential in treating infertility in patients. This is because exosomes, microvesicles, and apoptotic bodies, which are different types of vesicles, play a crucial role in transferring bioactive molecules that aid in cell-to-cell communication. Reproductive fluids can transport a variety of molecular cargos, such as miRNAs, mRNAs, proteins, lipids, and DNA molecules. The percentage of these cargos in the fluids can be linked to their physiological and pathological status. EVs are involved in several physiological and pathological processes and offer interesting non-cellular therapeutic possibilities to treat infertility. EVs (extracellular vesicles) transplantation has been shown in many studies to be a key part of regenerating different parts of the reproductive system, including the production of oocytes and the start of sperm production. Nevertheless, the existing evidence necessitates testifying to the effectiveness of injecting EVs in resolving reproductive problems among humans. This review focuses on the current literature about infertility issues in both females and males, specifically examining the potential treatments involving extracellular vesicles (EVs).


Subject(s)
Extracellular Vesicles , Humans , Extracellular Vesicles/physiology , Extracellular Vesicles/transplantation , Female , Male , Infertility/therapy , Animals , Infertility, Female/therapy , Reproductive Techniques, Assisted
3.
PLoS Negl Trop Dis ; 18(7): e0012320, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39008519

ABSTRACT

BACKGROUND: The sensitivity of parasitological and molecular methods is unsatisfactory for the diagnosis of strongyloidiasis, and serological techniques are remaining as the most effective diagnostic approach. The present study aimed to design and produce a chimeric recombinant antigen from Strongyloides stercoralis immunoreactive antigen (SsIR) and Ss1a antigens, using immune-informatics approaches, and evaluated its diagnostic performance in an ELISA system for the diagnosis of human strongyloidiasis. METHODOLOGY/PRINCIPAL FINDINGS: The coding sequences for SsIR and Ss1a were selected from GenBank and were gene-optimized. Using bioinformatics analysis, the regions with the highest antigenicity that did not overlap with other parasite antigens were selected. The chimeric recombinant antigen SsIR- Ss1a, was constructed. The solubility and physicochemical properties of the designed construct were analyzed and its tertiary structures were built and evaluated. The construct was expressed into the pET-23a (+) expression vector and the optimized DNA sequences of SsIR-Ss1a (873 bp) were cloned into competent E. coli DH5α cells. Diagnostic performances of the produced recombinant antigen, along with a commercial kit were evaluated in an indirect ELISA system, using a panel of sera from strongyloidiasis patients and controls. The physicochemical and bioinformatics evaluations revealed that the designed chimeric construct is soluble, has a molecular with of 35 KDa, and is antigenic. Western blotting confirmed the immunoreactivity of the produced chimeric recombinant antigen with the sera of strongyloidiasis patients. The sensitivity and specificity of the indirect ELISA system, using the produced SsIR-Ss1a chimeric antigen, were found to be 93.94% (95% CI, 0.803 to 0.989) and 97.22% (95% CI, 0.921 to 0.992) respectively. CONCLUSIONS/SIGNIFICANCE: The preliminary findings of this study suggest that the produced SsIR-Ss1a chimeric antigen shows promise in the diagnosis of human strongyloidiasis. However, these results are based on a limited panel of samples, and further research with a larger sample size is necessary to confirm its accuracy. The construct has potential as an antigen in the ELISA system for the serological diagnosis of this neglected parasitic infection, but additional validation is required.


Subject(s)
Antigens, Helminth , Enzyme-Linked Immunosorbent Assay , Sensitivity and Specificity , Serologic Tests , Strongyloides stercoralis , Strongyloidiasis , Humans , Strongyloidiasis/diagnosis , Strongyloidiasis/immunology , Animals , Serologic Tests/methods , Enzyme-Linked Immunosorbent Assay/methods , Strongyloides stercoralis/immunology , Strongyloides stercoralis/genetics , Antigens, Helminth/genetics , Antigens, Helminth/immunology , Antibodies, Helminth/blood , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Gene Expression
4.
Clin Chim Acta ; 561: 119757, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38857670

ABSTRACT

Male infertility represents a significant global public health issue that is currently emerging as a prominent research focus. Presently, laboratories adhere to the guidelines outlined by the World Health Organization (WHO) manuals for conducting routine semen analysis to diagnose male infertility. However, the accuracy of results in predicting sperm quality and fertility is limited because some individuals with a normal semen analysis report, an unremarkable medical history, and a physical examination may still experience infertility. As a result, the importance of employing more advanced techniques to investigate sperm function and male fertility in the treatment of male infertility and/or subfertility becomes apparent. The standard test for evaluating human semen has been improved by more complex tests that look at things like reactive oxygen species (ROS) levels, total antioxidant capacity (TAC), sperm DNA fragmentation levels, DNA compaction, apoptosis, genetic testing, and the presence and location of anti-sperm antibodies. Recent discoveries of novel biomarkers have significantly enriched our understanding of male fertility. Moreover, the notable biological diversity among samples obtained from the same individual complicates the efficacy of routine semen analysis. Therefore, unraveling the molecular mechanisms involved in fertilization is pivotal in expanding our understanding of factors contributing to male infertility. By understanding how these proteins work and what role they play in sperm activity, we can look at the expression profile in men who can't have children to find diagnostic biomarkers. This review examines the various sperm and seminal plasma proteins associated with infertility, as well as proteins that are either deficient or exhibit aberrant expression, potentially contributing to male infertility causes.


Subject(s)
Biomarkers , Infertility, Male , Proteomics , Semen , Humans , Male , Infertility, Male/diagnosis , Infertility, Male/metabolism , Biomarkers/analysis , Biomarkers/metabolism , Biomarkers/blood , Proteomics/methods , Semen/metabolism , Semen/chemistry
5.
J Appl Genet ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874855

ABSTRACT

Male infertility is a significant reproductive issue affecting a considerable number of couples worldwide. While there are various causes of male infertility, genetic factors play a crucial role in its development. We focused on identifying and analyzing the high-risk nsSNPs in DNAH1 and DNAH17 genes, which encode proteins involved in sperm motility. A total of 20 nsSNPs for DNAH1 and 10 nsSNPs for DNAH17 were analyzed using various bioinformatics tools including SIFT, PolyPhen-2, CADD, PhD-SNPg, VEST-4, and MutPred2. As a result, V1287G, L2071R, R2356W, R3169C, R3229C, E3284K, R4096L, R4133C, and A4174T in DNAH1 gene and C1803Y, C1829Y, R1903C, and L3595P in DNAH17 gene were identified as high-risk nsSNPs. These nsSNPs were predicted to decrease protein stability, and almost all were found in highly conserved amino acid positions. Additionally, 4 nsSNPs were observed to alter post-translational modification status. Furthermore, the interaction network analysis revealed that DNAH1 and DNAH17 interact with DNAH2, DNAH3, DNAH5, DNAH7, DNAH8, DNAI2, DNAL1, CFAP70, DNAI3, DNAI4, ODAD1, and DNAI7, demonstrating the importance of DNAH1 and DNAH17 proteins in the overall functioning of the sperm motility machinery. Taken together, these findings revealed the detrimental effects of identified high-risk nsSNPs on protein structure and function and highlighted their potential relevance to male infertility. Further studies are warranted to validate these findings and to elucidate the underlying mechanisms.

6.
Recent Pat Biotechnol ; 18(4): 332-343, 2024.
Article in English | MEDLINE | ID: mdl-38817010

ABSTRACT

BACKGROUND: Cancer is a leading cause of death and a significant public health issue worldwide. Standard treatment methods such as chemotherapy, radiotherapy, and surgery are only sometimes effective. Therefore, new therapeutic approaches are needed for cancer treatment. Sea anemone actinoporins are pore-forming toxins (PFTs) with membranolytic activities. RTX-A is a type of PFT that interacts with membrane phospholipids, resulting in pore formation. The synthesis of recombinant proteins in a secretory form has several advantages, including protein solubility and easy purification. In this study, we aimed to discover suitable signal peptides for producing RTX-A in Bacillus subtilis in a secretory form. METHODS: Signal peptides were selected from the Signal Peptide Web Server. The probability and secretion pathways of the selected signal peptides were evaluated using the SignalP server. ProtParam and Protein-sol were used to predict the physico-chemical properties and solubility. AlgPred was used to predict the allergenicity of RTX-A linked to suitable signal peptides. Non-allergenic, stable, and soluble signal peptides fused to proteins were chosen, and their secondary and tertiary structures were predicted using GOR IV and I-TASSER, respectively. The PROCHECK server performed the validation of 3D structures. RESULTS: According to bioinformatics analysis, the fusion forms of OSMY_ECOLI and MALE_ECOLI linked to RTX-A were identified as suitable signal peptides. The final proteins with signal peptides were stable, soluble, and non-allergenic for the human body. Moreover, they had appropriate secondary and tertiary structures. CONCLUSION: The signal above peptides appears ideal for rationalizing secretory and soluble RTX-A. Therefore, the signal peptides found in this study should be further investigated through experimental researches and patents.


Subject(s)
Antineoplastic Agents , Bacillus subtilis , Computer Simulation , Animals , Humans , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism , Bacillus subtilis/metabolism , Computational Biology/methods , Patents as Topic , Protein Sorting Signals , Sea Anemones/chemistry , Solubility , Cnidarian Venoms/chemistry , Cnidarian Venoms/pharmacology
7.
Clin Chim Acta ; 558: 119678, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38641194

ABSTRACT

Recurrent implantation failure (RIF) is a significant obstacle in assisted reproductive procedures, primarily because of compromised receptivity. As such, there is a need for a dependable and accurate clinical test to evaluate endometrial receptiveness, particularly during embryo transfer. MicroRNAs (miRNAs) have diverse functions in the processes of implantation and pregnancy. Dysregulation of miRNAs results in reproductive diseases such as recurrent implantation failure (RIF). The endometrium secretes several microRNAs (miRNAs) during the implantation period, which could potentially indicate whether the endometrium is suitable for in vitro fertilization (IVF). The goal of this review is to examine endometrial miRNAs as noninvasive biomarkers that successfully predict endometrium receptivity in RIF.


Subject(s)
Embryo Implantation , MicroRNAs , Humans , Female , MicroRNAs/genetics , Embryo Implantation/genetics , Uterus/metabolism , Body Fluids/metabolism , Body Fluids/chemistry , Endometrium/metabolism , Pregnancy , Fertilization in Vitro , Biomarkers/metabolism
8.
Photochem Photobiol ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38623963

ABSTRACT

The prevalence of male infertility has become a significant clinical concern worldwide, with a noticeable upward trend in recent times. The rates of fertilization and subsequent development of embryos are dependent on many parameters associated with the quality and viability of sperm. Photobiomodulation (PBM) is a promising approach with a great potential for translational applications in the treatment of spermatozoa exhibiting low quality and motility. In this study, a comprehensive analysis of the existing literature, specifically examining the mechanisms of action of PBM has been presented. Our objective was to enhance knowledge in the field of laser light therapy in order to promote the usage of irradiation in clinical settings in a more effective way. Within the realm of reproductive science, the utilization of PBM has been employed to enhance the metabolic processes, motility, and viability of spermatozoa. This is attributed to its advantageous effects on mitochondria, resulting in the activation of the mitochondrial respiratory chain and subsequent synthesis of ATP. This therapeutic approach can be highly advantageous in circumventing the reliance on chemical substances within the culture medium for spermatozoa while also facilitating the viability and motility of spermatozoa, particularly in circumstances involving thawing or samples with significant immotility.

9.
J Appl Genet ; 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38459407

ABSTRACT

Epidermolysis bullosa (EB) is a group of rare genetic skin fragility disorders, which are hereditary. These disorders are associated with mutations in at least 16 genes that encode components of the epidermal adhesion complex. Currently, there are no effective treatments for this disorder. All current treatment approaches focus on topical treatments to prevent complications and infections. In recent years, significant progress has been achieved in the treatment of the severe genetic skin blistering condition known as EB through preclinical and clinical advancements. Promising developments have emerged in the areas of protein and cell therapies, such as allogeneic stem cell transplantation; in addition, RNA-based therapies and gene therapy approaches have also become a reality. Stem cells obtained from embryonic or adult tissues, including the skin, are undifferentiated cells with the ability to generate, maintain, and replace fully developed cells and tissues. Recent advancements in preclinical and clinical research have significantly enhanced stem cell therapy, presenting a promising treatment option for various diseases that are not effectively addressed by current medical treatments. Different types of stem cells such as primarily hematopoietic and mesenchymal, obtained from the patient or from a donor, have been utilized to treat severe forms of diseases, each with some beneficial effects. In addition, extensive research has shown that gene transfer methods targeting allogeneic and autologous epidermal stem cells to replace or correct the defective gene are promising. These methods can regenerate and restore the adhesion of primary keratinocytes in EB patients. The long-term treatment of skin lesions in a small number of patients has shown promising results through the transplantation of skin grafts produced from gene-corrected autologous epidermal stem cells. This article attempts to summarize the current situation, potential development prospects, and some of the challenges related to the cell therapy approach for EB treatment.

10.
Clin Chim Acta ; 556: 117829, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38355000

ABSTRACT

Glioblastoma (GBM) is the most common type of malignant brain tumor.The discovery of microRNAs and their unique properties have made them suitable tools as biomarkers for cancer diagnosis, prognosis, and evaluation of therapeutic response using different types of nanomaterials as sensitive and specific biosensors. In this review, we discuss microRNA-based electrochemical biosensing systems and the use of nanoparticles in the evolving development of microRNA-based biosensors in glioblastoma.


Subject(s)
Biosensing Techniques , Glioblastoma , MicroRNAs , Nanoparticles , Nanostructures , Humans , MicroRNAs/genetics , Glioblastoma/diagnosis , Glioblastoma/genetics , Glioblastoma/therapy , Nanostructures/chemistry , Biomarkers, Tumor/genetics , Electrochemical Techniques
11.
DNA Cell Biol ; 43(3): 108-124, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38394131

ABSTRACT

Around 50% of all occurrences of infertility are attributable to the male factor, which is a significant global public health concern. There are numerous circumstances that might interfere with spermatogenesis and cause the body to produce abnormal sperm. While evaluating sperm, the count, the speed at which they migrate, and their appearance are the three primary characteristics that are analyzed. MicroRNAs, also known as miRNAs, are present in all physiological fluids and tissues. They participate in both physiological and pathological processes. Researches have demonstrated that the expression of microRNA genes differs in infertile men. These genes regulate spermatogenesis at various stages and in several male reproductive cells. Hence, microRNAs have the potential to act as useful indicators in the diagnosis and treatment of male infertility and other diseases affecting male reproduction. Despite this, additional research is necessary to determine the precise miRNA regulation mechanisms.


Subject(s)
Infertility, Male , MicroRNAs , Humans , Male , MicroRNAs/genetics , MicroRNAs/metabolism , Semen/metabolism , Infertility, Male/genetics , Spermatozoa/metabolism , Spermatozoa/pathology , Spermatogenesis/genetics , Fertility/genetics
12.
Clin Chim Acta ; 554: 117796, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38272250

ABSTRACT

Liver cancer is one of the deadliest types worldwide and early diagnosis is highly important for successful treatment. Therefore, it is necessary to develop rapid, sensitive, simple, and inexpensive analytical tools for its detection. MicroRNAs (miRNA) represent unique biomarkers whose expression in biofluids is strongly associated with cancer in general and miR-21, -31, -122, -145, -146a, -200c, -221, -222, and -223 in liver cancer, specifically. Various biosensors for miRNA detection have been developed. These include electrochemical biosensors based on amperometric, potentiometric, conductometric and impedimetric technology. Furthermore, the use of advanced nanomaterials with enhanced chemical stability, conductivity and electrocatalytic activity have greatly increased the sensitivity and specificity of these devices. The present review focuses on recent advances in electrochemical biosensors for miRNA detection in liver cancer.


Subject(s)
Biosensing Techniques , Liver Neoplasms , MicroRNAs , Nanostructures , Humans , MicroRNAs/genetics , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Biomarkers , Electrochemical Techniques
13.
J Reprod Immunol ; 162: 104192, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38215650

ABSTRACT

There is a suggested pathophysiology associated with endometrial microbiota in cases where repeated implantation failure of high-quality embryos is observed. However, there is a suspected association between endometrial microbiota and the pathogenesis of implantation failure. However, there is still a lack of agreement on the fundamental composition of the physiological microbiome within the uterine cavity. This is primarily due to various limitations in the studies conducted, including small sample sizes and variations in experimental designs. As a result, the impact of bacterial communities in the endometrium on human reproduction is still a subject of debate. In this discourse, we undertake a comprehensive examination of the existing body of research pertaining to the uterine microbiota and its intricate interplay with the process of embryo implantation.


Subject(s)
Embryo Implantation , Microbiota , Female , Humans , Embryo Implantation/physiology , Endometrium/microbiology , Uterus/physiology , Research Design
14.
Clin Chim Acta ; 552: 117676, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38007056

ABSTRACT

Lung cancer has been one of the leading causes of death over the past century. Unfortunately, the reliance on conventional methods to diagnose the phenotypic properties of tumors hinders early-stage cancer diagnosis. However, recent advancements in identifying disease-specific nucleotide biomarkers, particularly microRNAs, have brought us closer to early-stage detection. The roles of miR-155, miR-197, and miR-182 have been established in stage I lung cancer. Recent progress in synthesizing nanomaterials with higher conductivity has enhanced the diagnostic sensitivity of electrochemical biosensors, which can detect low concentrations of targeted biomarkers. Therefore, this review article focuses on exploring electrochemical biosensors based on microRNA in lung cancer.


Subject(s)
Biosensing Techniques , Lung Neoplasms , MicroRNAs , Nanostructures , Humans , MicroRNAs/genetics , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Nanostructures/chemistry , Biosensing Techniques/methods , Biomarkers, Tumor/genetics , Electrochemical Techniques
15.
BMC Microbiol ; 23(1): 257, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37704938

ABSTRACT

BACKGROUND: Enzybiotics are promising alternatives to conventional antibiotics for drug-resistant infections. Exolysins, as a class of enzybiotics, show antibacterial effects against methicillin-resistant Staphylococcus aureus (MRSA). This study evaluated a novel exolysin containing an SH3b domain for its antibacterial activity against MRSA. METHODS: This study designed a chimeric exolysin by fusing the Cell-binding domain (SH3b) from Lysostaphin with the lytic domain (LYZ2) from the gp61 enzyme. Subsequently, LYZ2-SH3b was cloned and expressed in Escherichia coli (E. coli). Finally, the antibacterial effects of LYZ2-SH3b compared with LYZ2 and vancomycin against reference and clinical isolates of MRSA were measured using the disc diffusion method, the minimal inhibitory concentration (MIC), and the minimal bactericidal concentration (MBC) assays. RESULTS: Analysis of bioinformatics showed that LYZ2-SH3b was stable, soluble, and non-allergenic. Protein purification was performed with a 0.8 mg/ml yield for LYZ2-SH3b. The plate lysis assay results indicated that, at the same concentrations, LYZ2-SH3b has a more inhibitory effect than LYZ2. The MICs of LYZ2 were 4 µg/mL (ATCC 43,300) and 8 µg/mL (clinical isolate ST239), whereas, for LYZ2-SH3b, they were 2 µg/mL (ATCC 43,300) and 4 µg/mL (clinical isolate ST239). This suggests a higher efficiency of LYZ2-SH3b compared to LYZ2. Furthermore, the MBCs of LYZ2 were 4 µg/mL (ATCC 43,300) and 8 µg/mL (clinical isolate ST239), whereas, for LYZ2-SH3b, they were 2 µg/mL (ATCC 43,300) and 4 µg/mL (clinical isolate ST239), thus confirming the superior lytic activity of LYZ2-SH3b over LYZ2. CONCLUSIONS: The study suggests that phage endolysins, such as LYZ2-SH3b, may represent a promising new approach to treating MRSA infections, particularly in cases where antibiotic resistance is a concern. But further studies are needed.


Subject(s)
Bacteriophages , Methicillin-Resistant Staphylococcus aureus , Methicillin-Resistant Staphylococcus aureus/genetics , Escherichia coli/genetics , Anti-Bacterial Agents/pharmacology , Vancomycin
16.
Clin Chim Acta ; 548: 117472, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37419303

ABSTRACT

Pancreatic cancer (PC) is one of the deadliest cancers worldwide. MicroRNAs (miRs) are sensitive molecular diagnostic tools that can serve as highly accurate biomarkers in many disease states in general and cancer specifically. MiR-based electrochemical biosensors can be easily and inexpensively manufactured, making them suitable for clinical use and mass production for point-of-care use. This paper reviews nanomaterial-enhanced miR-based electrochemical biosensors in pancreatic cancer detection, analyzing both labeled and label-free approaches, as well as enzyme-based and enzyme-free methods.


Subject(s)
Biosensing Techniques , MicroRNAs , Nanostructures , Pancreatic Neoplasms , Humans , MicroRNAs/genetics , Biosensing Techniques/methods , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , Electrochemical Techniques/methods , Pancreatic Neoplasms
17.
CNS Neurosci Ther ; 29(11): 3150-3159, 2023 11.
Article in English | MEDLINE | ID: mdl-37452477

ABSTRACT

Epilepsy is a common chronic neurological disorder caused by aberrant neuronal electrical activity. Antiseizure medications (ASMs) are the first line of treatment for people with epilepsy (PWE). However, their effectiveness may be limited by their inability to cross the blood-brain barrier (BBB), among many other potential underpinnings for drug resistance in epilepsy. Therefore, there is a need to overcome this issue and, hopefully, improve the effectiveness of ASMs. Recently, synthetic nanoparticle-based drug delivery systems have received attention for improving the effectiveness of ASMs due to their ability to cross the BBB. Furthermore, exosomes have emerged as a promising generation of drug delivery systems because of their potential benefits over synthetic nanoparticles. In this narrative review, we focus on various synthetic nanoparticles that have been studied to deliver ASMs. Furthermore, the benefits and limitations of each nano-delivery system have been discussed. Finally, we discuss exosomes as potentially promising delivery tools for treating epilepsy.


Subject(s)
Epilepsy , Exosomes , Humans , Epilepsy/drug therapy , Blood-Brain Barrier , Drug Delivery Systems , Anticonvulsants/therapeutic use
18.
Immun Inflamm Dis ; 11(6): e867, 2023 06.
Article in English | MEDLINE | ID: mdl-37382263

ABSTRACT

As reported by the World Health Organization, about 10 million individuals were infected with tuberculosis (TB) worldwide. Moreover, approximately 1.5 million people died of TB, of which 214,000 were infected with HIV simultaneously. Due to the high infection rate, the need for effective TB vaccination is highly felt. Until now, various methodologies have been proposed for the development of a protein subunit vaccine for TB. These vaccines have shown higher protection than other vaccines, particularly the Bacillus culture vaccine. The delivery system and safety regulator are common characteristics of effective adjuvants in TB vaccines and the clinical trial stage. The present study investigates the current state of TB adjuvant research focusing on the liposomal adjuvant system. Based on our findings, the liposomal system is a safe and efficient adjuvant from nanosize to microsize for vaccinations against TB, other intracellular infections, and malignancies. Clinical studies can provide valuable feedback for developing novel TB adjuvants, which ultimately enhance the impact of adjuvants on next-generation TB vaccines.


Subject(s)
Tuberculosis Vaccines , Humans , Adjuvants, Immunologic , Vaccination
19.
Exp Neurol ; 366: 114434, 2023 08.
Article in English | MEDLINE | ID: mdl-37201745

ABSTRACT

Long non-coding RNAs (lncRNAs) cannot be coded to proteins; however, they can display important functions in several aspects of cell biology. Their abnormal expression is verified in various disorders, including neurodegenerative diseases, especially Alzheimer's disease (AD). By acting as a cell cycle suppressor or promotor, lncRNAs mediate some signaling pathways, which in turn lead to exacerbation or improvement of AD. Wnt/ß-catenin signaling pathway, as an important pathway in the pathogenesis of AD, can extremely be affected by lncRNAs. This pathway participates in various biological processes, such as embryogenesis and tissue homeostasis, and is involved in expanding the central nervous system, such as synaptogenesis, plasticity, and hippocampal neurogenesis. lncRNAs can regulate the expression of Wnt pathway target genes by interacting with various components of this pathway. This article discusses lncRNAs and their associated mechanisms in the alteration of Wnt/ß-catenin signaling, which can be regarded as a new aspect of diagnosing and treating AD.


Subject(s)
Alzheimer Disease , RNA, Long Noncoding , Humans , Alzheimer Disease/metabolism , beta Catenin/genetics , beta Catenin/metabolism , Cell Cycle , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Wnt Signaling Pathway/genetics
20.
Mol Neurobiol ; 60(8): 4659-4678, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37138197

ABSTRACT

Gliomas make up virtually 80% of all lethal primary brain tumors and are categorized based on their cell of origin. Glioblastoma is an astrocytic tumor that has an inferior prognosis despite the ongoing advances in treatment modalities. One of the main reasons for this shortcoming is the presence of the blood-brain barrier and blood-brain tumor barrier. Novel invasive and non-invasive drug delivery strategies for glioblastoma have been developed to overcome both the intact blood-brain barrier and leverage the disrupted nature of the blood-brain tumor barrier to target cancer cells after resection-the first treatment stage of glioblastoma. Exosomes are among non-invasive drug delivery methods and have emerged as a natural drug delivery vehicle with high biological barrier penetrability. There are various exosome isolation methods from different origins, and the intended use of the exosomes and starting materials defines the choice of isolation technique. In the present review, we have given an overview of the structure of the blood-brain barrier and its disruption in glioblastoma. This review provided a comprehensive insight into novel passive and active drug delivery techniques to overcome the blood-brain barrier, emphasizing exosomes as an excellent emerging drug, gene, and effective molecule delivery vehicle used in glioblastoma therapy.


Subject(s)
Brain Neoplasms , Exosomes , Glioblastoma , Humans , Blood-Brain Barrier/pathology , Glioblastoma/drug therapy , Glioblastoma/pathology , Exosomes/pathology , Brain Neoplasms/pathology , Drug Delivery Systems/methods
SELECTION OF CITATIONS
SEARCH DETAIL