Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
J Phys Condens Matter ; 30(14): 145802, 2018 Apr 11.
Article in English | MEDLINE | ID: mdl-29485107

ABSTRACT

Two-dimensional (2D) structures that exhibit intriguing magnetic phenomena such as perpendicular magnetic anisotropy and its switchable feature are of great interests in spintronics research. Herein, the density functional theory studies reveal the critical impacts of strain and external gating on vacancy-induced magnetism and its spin direction in a graphene-like single layer of zinc oxide (ZnO). In contrast to the pristine and defective ZnO with an O-vacancy, the presence of a Zn-vacancy induces significant magnetic moments to its first neighboring O and Zn atoms due to the charge deficit. We further predict that the direction of magnetization easy axis reverses from an in-plane to perpendicular orientation under a practically achievable biaxial compressive strain of only ~1-2% or applying an electric field by means of the charge density modulation. This magnetization reversal is mainly driven by the strain- and electric-field-induced changes in the spin-orbit coupled d states of the first-neighbor Zn atom to a Zn-vacancy. These findings open interesting prospects for exploiting strain and electric field engineering to manipulate magnetism and magnetization orientation of 2D materials.

2.
J Nanosci Nanotechnol ; 14(12): 9011-3, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25971000

ABSTRACT

We systematically investigate the effects of having Pt as a substrate and/or capping layer on the magnetism and magnetocrystalline anisotropy (MCA) of 3d transition metal (TMs; Cr, Mn, Fe, and Co) monolayers (MLs) by using a first-principles calculationl method. We found that Fe and Co MLs are ferromagnetic (FM) on a Pt(001) surface, but Mn and Cr MLs are antiferromagnetic (AFM). The magnetic moments are quite robust with additional Pt-capping. Furthermore, Pt-capping enhances the small perpendicular MCA (meV) of Fe/Pt(001) significantly to 4.44 meV. Our electronic structure analyses indicate that strong hybridization between Pt-5d and TM-3d orbitals plays a crucial role in determining magnetic ordering and MCA. For comparison we also calculated magnetism and MCA of 3d TM MLs on Ta(001) with and without Ta-capping.

SELECTION OF CITATIONS
SEARCH DETAIL