Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
J Dairy Sci ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39122152

ABSTRACT

The objective of this study was to examine the impact of stage of lactation (early, mid and late) and proportion of pasture in the cows diet (high: GRS, medium: PMR and no: TMR) on the composition and quality of Cheddar cheese. Triplicate trials were carried out in each stage of lactation, and milk protein and fat contents were standardized for Cheddar cheese manufacture at pilot scale. As cheese milks were standardized for milk fat and protein contents, gross composition did not differ as a result of diet. Fatty acid profiles of GRS cheese were significantly different from TMR, while PMR profiles were less distinct and more similar to both GRS and TMR profiles, as illustrated by partial least squares discriminatory analysis. Fatty acids including CLA C18:2 cis-9, trans-11, C22:1 n-9 and C18:3 n-3 were most influential in this separation of profiles. Fatty acid profiling revealed that GRS derived cheese contained higher proportions of nutrients considered beneficial for human health including higher proportions of unsaturated fatty acids and omega-3 fatty acids. A biomarker model utilizing the proportions of 5 fatty acids was constructed and was effective at distinguishing between cheese of GRS, TMR and PMR feeding systems. Proportions of ρ-κ-casein, αs2-casein and αs1-casein in cheese also differed between diets while proportions of ρ-κ-casein, αs1-casein and ß-casein were lowest in late lactation cheese. The impact of diet was less influential compared with that of stage of lactation on the ripening characteristics of cheese. An index of primary proteolysis was highest in late lactation cheese. The peptides derived from the proteolysis of κ-casein and ß-casein and levels of secondary proteolysis, in particular, the proportions of 12 free amino acids were most influenced by stage of lactation. Overall this study demonstrated the effects of increasing pasture allowance and stage of lactation on the nutritional quality and ripening properties of Cheddar cheese.

2.
Foods ; 9(8)2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32718013

ABSTRACT

Until now, cheese peptidomics approaches have been criticised for their lower throughput. Namely, analytical gradients that are most commonly used for mass spectrometric detection are usually over 60 or even 120 min. We developed a cheese peptide mapping method using nano ultra-high-performance chromatography data-independent acquisition high-resolution mass spectrometry (nanoUHPLC-DIA-HRMS) with a chromatographic gradient of 40 min. The 40 min gradient did not show any sign of compromise in milk protein coverage compared to 60 and 120 min methods, providing the next step towards achieving higher-throughput analysis. Top 150 most abundant peptides passing selection criteria across all samples were cross-referenced with work from other publications and a good correlation between the results was found. To achieve even faster sample turnaround enhanced DIA methods should be considered for future peptidomics applications.

3.
Foods ; 8(5)2019 May 15.
Article in English | MEDLINE | ID: mdl-31096639

ABSTRACT

The application of reverse osmosis (RO) for preconcentration of milk (RO-milk) on farms can decrease the overall transportation costs of milk, increase the capacity of cheese production, and may be highly attractive from the cheese manufacturer's viewpoint. In this study, an attempt was made to produce a hard cheese from RO-milk with a concentration factor of 1.9 (RO-cheese). Proteolysis, volatile profiles, and sensory properties were evaluated throughout six months of RO-cheese ripening. Moderate primary proteolysis took place during RO-cheese ripening: about 70% of αs1-casein and 45% of ß-casein were hydrolyzed by the end of cheese maturation. The total content of free amino acids (FAA) increased from 4.3 to 149.9 mmol kg-1, with Lys, Pro, Glu, Leu, and γ-aminobutyric acid dominating in ripened cheese. In total, 42 volatile compounds were identified at different stages of maturation of RO-cheese; these compounds have previously been found in traditional Gouda-type and hard-type cheeses of prolonged maturation. Fresh RO-cheese was characterized by a milky and buttery flavor, whereas sweetness, saltiness, and umami flavor increased during ripening. Current results prove the feasibility of RO-milk for the production of hard cheese with acceptable sensory characteristics and may encourage further research and implementation of RO technology in cheese manufacture.

SELECTION OF CITATIONS
SEARCH DETAIL