Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
J Nanobiotechnology ; 22(1): 601, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39367418

ABSTRACT

Glioblastomas (GBMs) are the most common and aggressive malignant brain tumors, presenting significant challenges for treatment due to their invasive nature and localization in critical brain regions. Standard treatment includes surgical resection followed by radiation and adjuvant chemotherapy with temozolomide (TMZ). Recent advances in immunotherapy, including the use of mRNA vaccines, offer promising alternatives. This review focuses on the emerging use of mRNA vaccines for GBM treatment. We summarize recent advancements, evaluate current obstacles, and discuss notable successes in this field. Our analysis highlights that while mRNA vaccines have shown potential, their use in GBM treatment is still experimental. Ongoing research and clinical trials are essential to fully understand their therapeutic potential. Future developments in mRNA vaccine technology and insights into GBM-specific immune responses may lead to more targeted and effective treatments. Despite the promise, further research is crucial to validate and optimize the effectiveness of mRNA vaccines in combating GBM.


Subject(s)
Brain Neoplasms , Cancer Vaccines , Glioblastoma , Immunotherapy , Precision Medicine , RNA, Messenger , mRNA Vaccines , Glioblastoma/therapy , Humans , Brain Neoplasms/therapy , Cancer Vaccines/therapeutic use , Precision Medicine/methods , RNA, Messenger/genetics , RNA, Messenger/therapeutic use , Immunotherapy/methods , Clinical Trials as Topic , Animals , Temozolomide/therapeutic use
2.
Eur J Pharmacol ; 978: 176803, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38950839

ABSTRACT

The link between type 2 diabetes mellitus (T2DM) and an increased risk of breast cancer (BC) has prompted the exploration of novel therapeutic strategies targeting shared metabolic pathways. This review focuses on the emerging evidence surrounding the potential anti-cancer effects of sodium-glucose cotransporter-2 (SGLT2) inhibitors in the context of BC. Preclinical studies have demonstrated that various SGLT2 inhibitors, such as canagliflozin, dapagliflozin, ipragliflozin, and empagliflozin, can inhibit the proliferation of BC cells, induce apoptosis, and modulate key cellular signaling pathways. These mechanisms include the activation of AMP-activated protein kinase (AMPK), suppression of mammalian target of rapamycin (mTOR) signaling, and regulation of lipid metabolism and inflammatory mediators. The combination of SGLT2 inhibitors with conventional treatments, including chemotherapy and radiotherapy, as well as targeted therapies like phosphoinositide 3-kinases (PI3K) inhibitors, has shown promising results in enhancing the anti-cancer efficacy and potentially reducing treatment-related toxicities. The identification of specific biomarkers or genetic signatures that predict responsiveness to SGLT2 inhibitor therapy could enable more personalized treatment selection and optimization, particularly for challenging BC subtypes [e, g., triple negative BC (TNBC)]. Ongoing and future clinical trials investigating the use of SGLT2 inhibitors, both as monotherapy and in combination with other agents, will be crucial in elucidating their translational potential and guiding their integration into comprehensive BC care. Overall, SGLT2 inhibitors represent a novel and promising therapeutic approach with the potential to improve clinical outcomes for patients with various subtypes of BC, including the aggressive and chemo-resistant TNBC.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Sodium-Glucose Transporter 2 Inhibitors , Humans , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Breast Neoplasms/drug therapy , Animals , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Female , Clinical Trials as Topic
3.
Cell Death Discov ; 10(1): 321, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992073

ABSTRACT

Stroke stands as a predominant cause of mortality and morbidity worldwide, and there is a pressing need for effective therapies to improve outcomes and enhance the quality of life for stroke survivors. In this line, effective efferocytosis, the clearance of apoptotic cells, plays a crucial role in neuroprotection and immunoregulation. This process involves specialized phagocytes known as "professional phagocytes" and consists of four steps: "Find-Me," "Eat-Me," engulfment/digestion, and anti-inflammatory responses. Impaired efferocytosis can lead to secondary necrosis and inflammation, resulting in adverse outcomes following brain pathologies. Enhancing efferocytosis presents a potential avenue for improving post-stroke recovery. Several therapeutic targets have been identified, including osteopontin, cysteinyl leukotriene 2 receptor, the µ opioid receptor antagonist ß-funaltrexamine, and PPARγ and RXR agonists. Ferroptosis, defined as iron-dependent cell death, is now emerging as a novel target to attenuate post-stroke tissue damage and neuronal loss. Additionally, several biomarkers, most importantly CD163, may serve as potential biomarkers and therapeutic targets for acute ischemic stroke, aiding in stroke diagnosis and prognosis. Non-pharmacological approaches involve physical rehabilitation, hypoxia, and hypothermia. Mitochondrial dysfunction is now recognized as a major contributor to the poor outcomes of brain stroke, and medications targeting mitochondria may exhibit beneficial effects. These strategies aim to polarize efferocytes toward an anti-inflammatory phenotype, limit the ingestion of distressed but viable neurons, and stimulate efferocytosis in the late phase of stroke to enhance post-stroke recovery. These findings highlight promising directions for future research and development of effective stroke recovery therapies.

4.
Curr Dev Nutr ; 8(6): 103785, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38939650

ABSTRACT

This article explores the potential therapeutic implications of phytochemicals on the gut-brain axis (GBA), which serves as a communication network between the central nervous system and the enteric nervous system. Phytochemicals, which are compounds derived from plants, have been shown to interact with the gut microbiota, immune system, and neurotransmitter systems, thereby influencing brain function. Phytochemicals such as polyphenols, carotenoids, flavonoids, and terpenoids have been identified as having potential therapeutic implications for various neurological disorders. The GBA plays a critical role in the development and progression of various neurological disorders, including Parkinson's disease, multiple sclerosis, depression, anxiety, and autism spectrum disorders. Dysbiosis, or an imbalance in gut microbiota composition, has been associated with a range of neurological disorders, suggesting that modulating the gut microbiota may have potential therapeutic implications for these conditions. Although these findings are promising, further research is needed to elucidate the optimal use of phytochemicals in neurological disorder treatment, as well as their potential interactions with other medications. The literature review search was conducted using predefined search terms such as phytochemicals, gut-brain axis, neurodegenerative, and Parkinson in PubMed, Embase, and the Cochrane library.

5.
Mol Biotechnol ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935260

ABSTRACT

Inflammatory and autoimmune disorders, characterized by dysregulated immune responses leading to tissue damage and chronic inflammation, present significant health challenges. This review uniquely focuses on efferocytosis-the phagocyte-mediated clearance of apoptotic cells-and its pivotal role in these disorders. We delve into the intricate mechanisms of efferocytosis' four stages and their implications in disease pathogenesis, distinguishing our study from previous literature. Our findings highlight impaired efferocytosis in conditions like atherosclerosis and asthma, proposing its targeting as a novel therapeutic strategy. We discuss the therapeutic potential of efferocytosis in modulating immune responses and resolving inflammation, offering a new perspective in treating inflammatory disorders.

6.
Heliyon ; 10(7): e28167, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560206

ABSTRACT

Cancer remains a challenging disease worldwide, necessitating innovative approaches to better comprehend its underlying molecular mechanisms and devise effective therapeutic strategies. Over the past decade, microRNAs (miRNAs) have emerged as crucial players in cancer progression due to their regulatory roles in various cellular processes. Moreover, the involvement of unwanted soluble receptors has gained increasing attention because they contribute to tumorigenesis or drug resistance by disrupting normal signaling pathways and neutralizing ligands. This comprehensive review explores the intricate interplay between miRNAs and unwanted-soluble receptors in the context of cancer biology. This study provides an analysis of the regulatory interactions between miRNAs and these receptors, elucidating how miRNAs can either suppress or enhance their expression. MiRNAs can directly target receptor transcripts, thereby regulating soluble receptor levels. They also modulate the proteolytic cleavage of membrane-bound receptors into soluble forms by targeting sheddases, such as ADAMs and MMPs. Furthermore, the review delves into the therapeutic potential of manipulating miRNAs to modulate unwanted soluble receptors. Various strategies, including synthetic miRNA mimics or anti-miRNAs, hold promise for restoring or inhibiting miRNA function to counteract aberrant receptor activity. Moreover, exploring miRNA-based delivery systems may provide targeted and precise therapies that minimizing off-target effects. In conclusion, this review sheds light on the intricate regulatory networks involving miRNAs and unwanted soluble receptors in cancer biology thereby uncovering novel therapeutic targets, and paving the way for developing innovative anti-cancer therapies.

7.
Heliyon ; 10(4): e26260, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38390040

ABSTRACT

Breast cancer (BC) is viewed as a significant public health issue and is the primary cause of cancer-related deaths among women worldwide. Triple-negative breast cancer (TNBC) is a particularly aggressive subtype that predominantly affects young premenopausal women. The tumor suppressor p53 playsa vital role in the cellular response to DNA damage, and its loss or mutations are commonly present in many cancers, including BC. Recent evidence suggests that mutant p53 proteins can aggregate and form prion-like structures, which may contribute to the pathogenesis of different types of malignancies, such as BC. This review provides an overview of BC molecular subtypes, the epidemiology of TNBC, and the role of p53 in BC development. We also discuss the potential implications of prion-like aggregation in BC and highlight future research directions. Moreover, a comprehensive analysis of the current therapeutic approaches targeting p53 aggregates in BC treatment is presented. Strategies including small molecules, chaperone inhibitors, immunotherapy, CRISPR-Cas9, and siRNA are discussed, along with their potential benefits and drawbacks. The use of these approaches to inhibit p53 aggregation and degradation represents a promising target for cancer therapy. Future investigations into the efficacy of these approaches against various p53 mutations or binding to non-p53 proteins should be conducted to develop more effective and personalized therapies for BC treatment.

8.
Crit Rev Oncol Hematol ; 194: 104249, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38145831

ABSTRACT

BACKGROUND: Cervical cancer, a pernicious gynecological malignancy, causes the mortality of hundreds of thousands of females worldwide. Despite a considerable decline in mortality, the surging incidence rate among younger women has raised serious concerns. Immortality is the most important characteristic of tumor cells, hence the carcinogenesis of cervical cancer cells pivotally requires compromising with cell death mechanisms. METHODS: The current study comprehensively reviewed the mechanisms of non-apoptotic cell death programs to provide possible disease management strategies. RESULTS: Comprehensive evidence has stated that focusing on necroptosis, pyroptosis, and autophagy for disease management is associated with significant limitations such as insufficient understanding, contradictory functions, dependence on disease stage, and complexity of intracellular pathways. However, ferroptosis represents a predictable role in cervix carcinogenesis, and ferroptosis-related genes demonstrate a remarkable correlation with patient survival and clinical outcomes. CONCLUSION: Ferroptosis may be an appropriate option for disease management strategies from predicting prognosis to treatment.


Subject(s)
Ferroptosis , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/therapy , Autophagy , Carcinogenesis , Cell Death
9.
Cell Biochem Funct ; 41(8): 959-977, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37787641

ABSTRACT

Recently, efforts have been made to recognize the precise reason(s) for transplant failure and the process of rejection utilizing the molecular signature. Most transplant recipients do not appreciate the unknown length of survival of allogeneic grafts with the existing standard of care. Two noteworthy immunological pathways occur during allogeneic transplant rejection. A nonspecific innate immune response predominates in the early stages of the immune reaction, and allogeneic antigens initiate a donor-specific adaptive reaction. Though the adaptive response is the major cause of allograft rejection, earlier pro-inflammatory responses that are part of the innate immune response are also regarded as significant in graft loss. The onset of the innate and adaptive immune response causes chronic and acute transplant rejection. Currently employed immunosuppressive medications have shown little or no influence on chronic rejection and, as a result, on overall long-term transplant survival. Furthermore, long-term pharmaceutical immunosuppression is associated with side effects, toxicity, and an increased risk of developing diseases, both infectious and metabolic. As a result, there is a need for the development of innovative donor-specific immunosuppressive medications to regulate the allorecognition pathways that induce graft loss and to reduce the side effects of immunosuppression. Efferocytosis is an immunomodulatory mechanism with fast and efficient clearance of apoptotic cells (ACs). As such, AC therapy strategies have been suggested to limit transplant-related sequelae. Efferocytosis-based medicines/treatments can also decrease the use of immunosuppressive drugs and have no detrimental side effects. Thus, this review aims to investigate the impact of efferocytosis on transplant rejection/tolerance and identify approaches using AC clearance to increase transplant viability.


Subject(s)
Graft Rejection , Transplantation Tolerance , Graft Rejection/prevention & control , Immunosuppression Therapy , Apoptosis
10.
J Curr Ophthalmol ; 35(1): 73-78, 2023.
Article in English | MEDLINE | ID: mdl-37680296

ABSTRACT

Purpose: To identify the causative mutations of autosomal dominant (AD) congenital cataracts in a large Iranian family. Methods: The complete and accurate family history and clinical information of participants were collected. A total of 51 family members, including 22 affected and 29 unaffected individuals, were recruited in this study. We performed whole exome sequencing to reveal pathogenic mutation. We used amplification refractory mutation system polymerase chain reaction and Sanger sequencing techniques to confirm segregation in patients and also to rule it out in the healthy participants. Results: A known missense mutation, c.827C>T (S276F), in GJA8 was identified. This mutation was confirmed in all patients. Neither all healthy family members nor 100 healthy individuals who served as controls from general population had this mutation. Conclusion: The missense mutation c. 827C>T in the GJA8 gene is associated with AD congenital lamellar cataract with complete penetrance in a six-generation Iranian family.

11.
J Cancer Res Clin Oncol ; 149(16): 15249-15273, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37581648

ABSTRACT

BACKGROUND: Cancer, being a complex disease, presents a major challenge for the scientific and medical communities. Peptide therapeutics have played a significant role in different medical practices, including cancer treatment. METHOD: This review provides an overview of the current situation and potential development prospects of anticancer peptides (ACPs), with a particular focus on peptide vaccines and peptide-drug conjugates for cancer treatment. RESULTS: ACPs can be used directly as cytotoxic agents (molecularly targeted peptides) or can act as carriers (guiding missile) of chemotherapeutic agents and radionuclides by specifically targeting cancer cells. More than 60 natural and synthetic cationic peptides are approved in the USA and other major markets for the treatment of cancer and other diseases. Compared to traditional cancer treatments, peptides exhibit anticancer activity with high specificity and the ability to rapidly kill target cancer cells. ACP's target and kill cancer cells via different mechanisms, including membrane disruption, pore formation, induction of apoptosis, necrosis, autophagy, and regulation of the immune system. Modified peptides have been developed as carriers for drugs, vaccines, and peptide-drug conjugates, which have been evaluated in various phases of clinical trials for the treatment of different types of solid and leukemia cancer. CONCLUSIONS: This review highlights the potential of ACPs as a promising therapeutic option for cancer treatment, particularly through the use of peptide vaccines and peptide-drug conjugates. Despite the limitations of peptides, such as poor metabolic stability and low bioavailability, modified peptides show promise in addressing these challenges. Various mechanism of action of anticancer peptides. Modes of action against cancer cells including: inducing apoptosis by cytochrome c release, direct cell membrane lysis (necrosis), inhibiting angiogenesis, inducing autophagy-mediated cell death and immune cell regulation.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Peptides/pharmacology , Peptides/therapeutic use , Neoplasms/pathology , Cell Death , Necrosis , Vaccines, Subunit/therapeutic use , Vaccines, Subunit/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
12.
Curr Med Chem ; 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37497711

ABSTRACT

Resolvins are specialized pro-resolving mediators derived from omega-3 fatty acids that can suppress several cancer-related molecular pathways, including important activation of transcription parameters in the tumor cells and their microenvironment, inflammatory cell infiltration, cytokines as well as chemokines. Recently, an association between resolvins and an important anti-inflammatory process in apoptotic tumor cell clearance (efferocytosis) was shown. The inflammation status or the oncogene activation increases the risk of cancer development via triggering the transcriptional agents, including nuclear factor kappa-light-chain-enhancer of activated B cells by generating the pro-inflammatory lipid molecules and infiltrating the tumor cells along with the high level of pro-inflammatory signaling. These events can cause an inflammatory microenvironment. Resolvins might decrease the leukocyte influx into the inflamed tissues. It is widely accepted that resolvins prohibit the development of debris-triggered cancer via increasing the clearance of debris, especially by macrophage phagocytosis in tumors without any side effects. Resolvins D2, D1, and E1 might suppress tumor-growing inflammation by activation of macrophages clearance of cell debris in the tumor. Resolvin D5 can assist patients with pain during treatment. However, the effects of resolvins as anti-inflammatory mediators in cancers are not completely explained. Thus, based on the most recent studies, we tried to summarize the most recent knowledge on resolvins in cancers.

13.
Cell Tissue Res ; 394(1): 55-74, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37480408

ABSTRACT

Endometriosis is a gynecological inflammatory disorder characterized by the development of endometrial-like cells outside the uterine cavity. This disease is associated with a wide range of clinical presentations, such as debilitating pelvic pain and infertility issues. Endometriosis diagnosis is not easily discovered by ultrasound or clinical examination. Indeed, difficulties in noninvasive endometriosis diagnosis delay the confirmation and management of the disorder, increase symptoms, and place a significant medical and financial burden on patients. So, identifying specific and sensitive biomarkers for this disease should therefore be a top goal. Exosomes are extracellular vesicles secreted by most cell types. They transport between cells' bioactive molecules such as noncoding RNAs and proteins. MicroRNAs and long noncoding RNAs which are key molecules transferred by exosomes have recently been identified to have a significant role in endometriosis by modulating different proteins and their related genes. As a result, the current review focuses on exosomal micro-and-long noncoding RNAs that are involved in endometriosis disease. Furthermore, major molecular mechanisms linking corresponding RNA molecules to endometriosis development will be briefly discussed to better clarify the potential functions of exosomal noncoding RNAs in the therapy and diagnosis of endometriosis.


Subject(s)
Endometriosis , Exosomes , MicroRNAs , RNA, Long Noncoding , Female , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Endometriosis/diagnosis , Endometriosis/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Biomarkers/metabolism , Exosomes/genetics , Exosomes/metabolism
14.
Biotechnol Appl Biochem ; 70(6): 1843-1859, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37387120

ABSTRACT

Despite the efficiency of nanoparticle (NP) therapy, in vivo investigations have shown that it does not perform as well as in vitro. In this case, NP confronts many defensive hurdles once they enter the body. The delivery of NP to sick tissue is inhibited by these immune-mediated clearance mechanisms. Hence, using a cell membrane to hide NP for active distribution offers up a new path for focused treatment. These NPs are better able to reach the disease's target location, leading to enhanced therapeutic efficacy. In this emerging class of drug delivery vehicles, the inherent relation between the NPs and the biological components obtained from the human body was utilized, which mimic the properties and activities of native cells. This new technology has shown the viability of using biomimicry to evade immune system-provided biological barriers, with an emphasis on restricting clearance from the body before reaching its intended target. Furthermore, by providing signaling cues and transplanted biological components that favorably change the intrinsic immune response at the disease site, the NPs would be capable interacting with immune cells regarding the biomimetic method. Thus, we aimed to provide a current landscape and future trends of biomimetic NPs in drug delivery.


Subject(s)
Biomimetics , Nanoparticles , Humans , Drug Delivery Systems , Cell Membrane
15.
Curr Pharm Des ; 2023 May 29.
Article in English | MEDLINE | ID: mdl-37254540

ABSTRACT

As the World Health Organization (WHO) declared, vaccines prevent an average of 2-3 million deaths yearly from diseases. However, effective prophylactic and therapeutic vaccines have yet to be developed for eradicating the deadliest diseases, viz., types of cancer, malaria, human immunodeficiency virus (HIV), and most serious microbial infections. Furthermore, scores of the existing vaccines have disadvantages, such as failure to completely stimulate the immune system, in vivo instability, high toxicity, need for the cold chain, and multiple administrations. Thus, good vaccine candidates need to be designed to elicit adaptive immune responses. In this line, the integration of sciences along with the use of various technologies has led to the emergence of a new field in vaccine production called biomimetic nanovaccines (BNVs). Given that, nanotechnology can significantly contribute to the design of such vaccines, providing them with enhanced specificity and potency. Nanoparticles (NPs) and biomimetic NPs (BNPs) are now exploited as the main carriers for drug delivery systems, especially BNPs, whose biological mimicry makes them escape the immune system and transport drugs to the desired target. The drug accordingly seeks to camouflage itself with the help of NPs and the membranes taken from cells in the human body, including red blood cells (RBCs), white blood cells (WBCs), platelets, and cancer cells, for more effective and ideal delivery. As BNPs have recently become the center of attention in vaccine design, this review deliberates on the advances in BNVs.

16.
Cell Biochem Funct ; 41(2): 152-165, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36794573

ABSTRACT

Creating cellular homeostasis within a defined tissue typically relates to the processes of apoptosis and efferocytosis. A great example here is cell debris that must be removed to prevent unwanted inflammatory responses and then reduce autoimmunity. In view of that, defective efferocytosis is often assumed to be responsible for the improper clearance of apoptotic cells (ACs). This predicament triggers off inflammation and even results in disease development. Any disruption of phagocytic receptors, molecules as bridging groups, or signaling routes can also inhibit macrophage efferocytosis and lead to the impaired clearance of the apoptotic body. In this line, macrophages as professional phagocytic cells take the lead in the efferocytosis process. As well, insufficiency in macrophage efferocytosis facilitates the spread of a wide variety of diseases, including neurodegenerative diseases, kidney problems, types of cancer, asthma, and the like. Establishing the functions of macrophages in this respect can be thus useful in the treatment of many diseases. Against this background, this review aimed to recapitulate the knowledge about the mechanisms related to macrophage polarization under physiological or pathological conditions, and shed light on its interaction with efferocytosis.


Subject(s)
Macrophages , Phagocytosis , Humans , Macrophages/metabolism , Phagocytosis/physiology , Inflammation/metabolism , Signal Transduction , Apoptosis
17.
Mini Rev Med Chem ; 23(16): 1592-1607, 2023.
Article in English | MEDLINE | ID: mdl-36617717

ABSTRACT

Nowadays, many people suffer from Neurological Diseases (NDs), particularly neurodegenerative diseases. Hence, there is an urgent need to discover new and more effective diagnostic and prognostic biomarkers as well as therapeutic strategies for the treatment of NDs. In this context, detecting biomarkers can provide helpful information on various levels of NDs. Up to now, there has been a lot of progress in recognizing these diseases, but they are not completely clear yet. NDs are associated with inflammatory conditions and there are several differences in NDs' immune biomarkers compared to normal conditions. Among these biomarkers, soluble CD163 (sCD163) levels (as a new biomarker) increase in biofluids, relating to the activation of macrophage/microglia and inflammation levels in NDs. ADAM17/TACE and ADAM10 are the responsible enzymes for producing sCD163 from macrophages. Increased shedding of CD163 is caused by inflammatory stimuli, and a function has been hypothesized for sCD163 in immunological suppression. When the body confronts an inflammation or infection, the concentration of sCD163 drives up. sCD163 is stable and can be easily quantified in the serum. In addition to its role as a biomarker, sCD163 can be a good modulator of adaptive immune suppression after stroke. sCD163, with a long half-life, has been proposed to be a surrogate for some critical markers such as Tumor Necrosis Factor-α (TNF- α). Furthermore, sCD163 production can be regulated by some regents/approaches such as zidovudine, nanotechnology, combination antiretroviral treatment, and aprepitant. Considering the importance of the issue, the critical role of sCD163 in NDs was highlighted for novel diagnostic and prognostic purposes.


Subject(s)
Inflammation , Nervous System Diseases , Humans , Prognosis , Antigens, Differentiation, Myelomonocytic , Biomarkers , Inflammation/diagnosis , Inflammation/drug therapy , Nervous System Diseases/diagnosis , Nervous System Diseases/drug therapy
18.
Clin Chim Acta ; 540: 117216, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36592922

ABSTRACT

Gastrointestinal cancer (GIC) remains a leading cause of morbidity and mortality worldwide. Unfortunately, these cancers are diagnosed in advanced metastatic stages due to lack of reliable biomarkers that are sufficiently specific and sensitive in early disease. There has been growing evidence that circulating exosomes can be used to diagnose cancer non-invasively with limited risks and side effects. Furthermore, exosomal long non-coding RNAs (lncRNAs) are emerging as a new class of promising biomarkers in cancer. This review provides an overview of the extraction and detection of exosomal lncRNAs with a focus on their potential role in GIC.


Subject(s)
Exosomes , Gastrointestinal Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Gastrointestinal Neoplasms/diagnosis , Gastrointestinal Neoplasms/genetics , Biomarkers, Tumor/genetics , Exosomes/genetics , Gene Expression Regulation, Neoplastic
19.
Mini Rev Med Chem ; 23(13): 1376-1389, 2023.
Article in English | MEDLINE | ID: mdl-36111766

ABSTRACT

The human microbiome comprises the genomes of the microbiota that live on and within humans, such as protozoa, archaea, eukaryotes, viruses, and most bacteria. Gastrointestinal disorders such as inflammatory bowel disease, colon cancer, celiac disease, and irritable bowel syndrome can all be triggered by a change in gut flora. The alteration of the gut microbiota (also known as "gut dysbiosis") is affected by host genetics, nutrition, antibiotics, and inflammation, and it is associated with the development of inflammatory bowel disease (IBD). Also, intestinal epithelial dysfunction, altered autophagy, and immune hyperactivation are frequently detected in individuals with severe IBD, which may be attributed to impaired miRNA expression functions. While the exact mechanisms of how Gut Microbiota may cause IBD and intestinal epithelial dysfunction are still debated, recent data point toward the possibility that hormones, gender and miRNAs expression are modifiable contributors to IBD. This review summarizes the current evidence for an association between hormones, gender and miRNAs and Gut Microbiota in IBD and discusses potential mechanisms by which gut microbiota may impact IBD. The study also outlines critical unanswered topics that need to be solved to enhance IBD prevention and treatment in people with gut dysbiosis.


Subject(s)
Gastrointestinal Microbiome , Inflammatory Bowel Diseases , MicroRNAs , Humans , Dysbiosis/complications , Dysbiosis/microbiology , Inflammation/complications , MicroRNAs/genetics
20.
Curr Mol Med ; 23(9): 863-875, 2023.
Article in English | MEDLINE | ID: mdl-35980063

ABSTRACT

Treatment of neurological disorders has always been one of the challenges facing scientists due to poor prognosis and symptom overlap, as well as the progress of the disease process. Neurological disorders such as Huntington's, Parkinson's, Alzheimer's diseases, and Amyotrophic Lateral Sclerosis are very debilitating. Therefore, finding a biomarker is essential for early diagnosis and treatment goals. Recent studies have focused more on molecular factors and gene manipulation to find effective diagnostic and therapeutic biomarkers. Among these factors, microRNAs (miRNAs/ miRs) have attracted much attention. On the other hand, a growing correlation between miRNAs and neurological disorders has caused scientists to consider it as a diagnostic and therapeutic target. In this line, the miR-153 is one of the most important and highly conserved miRNAs in mice and humans, whose expression level is not only altered in neurological disorders but also improves neurogenesis. MiR-153 can regulate multiple biological processes by targeting various factors. Furthermore, the miR-153 expression also can be regulated by important regulators, such as long non-coding RNAs (e.g., KCNQ1OT1) and some compounds (e.g., Tanshinone IIA) altering the expression of miR-153. Given the growing interest in miR-153 as a biomarker and therapeutic target for neurological diseases as well as the lack of comprehensive investigation of miR-153 function in these disorders, it is necessary to identify the downstream and upstream targets and also it's potential as a therapeutic biomarker target. In this review, we will discuss the critical role of miR-153 in neurological disorders for novel diagnostic and prognostic purposes and its role in multi-drug resistance.


Subject(s)
Alzheimer Disease , Biological Phenomena , MicroRNAs , Humans , Animals , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Neurogenesis , Biomarkers
SELECTION OF CITATIONS
SEARCH DETAIL