Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters








Publication year range
1.
Ren Fail ; 46(2): 2375033, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38967135

ABSTRACT

The Astragalus mongholicus Bunge and Panax notoginseng formula (A&P) has been clinically shown to effectively slow down the progression of chronic kidney disease (CKD) and has demonstrated significant anti-fibrosis effects in experimental CKD model. However, the specific active ingredients and underlying mechanism are still unclear. The active ingredients of A&P were analyzed by Ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-HR-MS). A mouse model of CKD was constructed by 5/6 nephrectomy. Renal function was assessed by creatinine and urea nitrogen. Real-time PCR and Western Blot were performed to detect the mRNA and protein changes in kidney and cells. An in vitro fibrotic cell model was constructed by TGF-ß induction in TCMK-1 cells. The results showed that thirteen active ingredients of A&P were identified by UPLC-HR-MS, nine of which were identified by analysis with standards, among which the relative percentage of NOB was high. We found that NOB treatment significantly improved renal function, pathological damage and reduced the expression level of fibrotic factors in CKD mice. The results also demonstrated that Lgals1 was overexpressed in the interstitial kidney of CKD mice, and NOB treatment significantly reduced its expression level, while inhibiting PI3K and AKT phosphorylation. Interestingly, overexpression of Lgals1 significantly increased fibrosis in TCMK1 cells and upregulated the activity of PI3K and AKT, which were strongly inhibited by NOB treatment. NOB is one of the main active components of A&P. The molecular mechanism by which NOB ameliorates renal fibrosis in CKD may be through the inhibition of Lgals1/PI3K/AKT signaling pathway.


Subject(s)
Disease Models, Animal , Drugs, Chinese Herbal , Fibrosis , Flavones , Kidney , Panax notoginseng , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Renal Insufficiency, Chronic , Signal Transduction , Animals , Mice , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Male , Panax notoginseng/chemistry , Flavones/pharmacology , Flavones/therapeutic use , Kidney/pathology , Kidney/drug effects , Astragalus Plant/chemistry , Mice, Inbred C57BL , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid
2.
Biomed Pharmacother ; 176: 116922, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38870627

ABSTRACT

The intricate crosstalk between long noncoding RNAs (lncRNAs) and epigenetic modifications such as chromatin/histone methylation and acetylation offer new perspectives on the pathogenesis and treatment of kidney diseases. lncRNAs, a class of transcripts longer than 200 nucleotides with no protein-coding potential, are now recognized as key regulatory molecules influencing gene expression through diverse mechanisms. They modulate the epigenetic modifications by recruiting or blocking enzymes responsible for adding or removing methyl or acetyl groups, such as DNA, N6-methyladenosine (m6A) and histone methylation and acetylation, subsequently altering chromatin structure and accessibility. In kidney diseases such as acute kidney injury (AKI), chronic kidney disease (CKD), diabetic nephropathy (DN), glomerulonephritis (GN), and renal cell carcinoma (RCC), aberrant patterns of DNA/RNA/histone methylation and acetylation have been associated with disease onset and progression, revealing a complex interplay with lncRNA dynamics. Recent studies have highlighted how lncRNAs can impact renal pathology by affecting the expression and function of key genes involved in cell cycle control, fibrosis, and inflammatory responses. This review will separately address the roles of lncRNAs and epigenetic modifications in renal diseases, with a particular emphasis on elucidating the bidirectional regulatory effects and underlying mechanisms of lncRNAs in conjunction with DNA/RNA/histone methylation and acetylation, in addition to the potential exacerbating or renoprotective effects in renal pathologies. Understanding the reciprocal relationships between lncRNAs and epigenetic modifications will not only shed light on the molecular underpinnings of renal pathologies but also present new avenues for therapeutic interventions and biomarker development, advancing precision medicine in nephrology.


Subject(s)
Chromatin , DNA Methylation , Epigenesis, Genetic , Histones , Kidney Diseases , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Humans , Histones/metabolism , Acetylation , DNA Methylation/genetics , Kidney Diseases/genetics , Kidney Diseases/metabolism , Chromatin/metabolism , Animals
3.
Ren Fail ; 46(1): 2338484, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38832469

ABSTRACT

Critically ill COVID-19 patients may exhibit various clinical symptoms of renal dysfunction including severe Acute Kidney Injury (AKI). Currently, there is a lack of bibliometric analyses on COVID-19-related AKI. The aim of this study is to provide an overview of the current research status and hot topics regarding COVID-19 AKI. The literature was retrieved from the Web of Science Core Collection (WoSCC) database. Subsequently, we utilized Microsoft Excel, VOSviewer, Citespace, and Pajek software to revealed the current research status, emerging topics, and developmental trends pertaining to COVID-19 AKI. This study encompassed a total of 1507 studies on COVID-19 AKI. The United States, China, and Italy emerged as the leading three countries in terms of publication numbers, contributing 498 (33.05%), 229 (15.20%), and 140 (9.29%) studies, respectively. The three most active and influential institutions include Huazhong University of Science and Technology, Wuhan University and Harvard Medical School. Ronco C from Italy, holds the record for the highest number of publications, with a total of 15 papers authored. Cheng YC's work from China has garnered the highest number of citations, totaling 470 citations. The co-occurrence analysis of author keywords reveals that 'mortality', 'intensive care units', 'chronic kidney disease', 'nephrology', 'renal transplantation', 'acute respiratory distress syndrome', and 'risk factors' emerge as the primary areas of focus within the realm of COVID-19 AKI. In summary, this study analyzes the research trends in the field of COVID-19 AKI, providing a reference for further exploration and research on COVID-19 AKI mechanisms and treatment.


Subject(s)
Acute Kidney Injury , Bibliometrics , COVID-19 , Pandemics , SARS-CoV-2 , Humans , COVID-19/complications , COVID-19/epidemiology , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Coronavirus Infections/epidemiology , Coronavirus Infections/complications , Pneumonia, Viral/epidemiology , Pneumonia, Viral/complications , Italy/epidemiology , Betacoronavirus , China/epidemiology , Global Health
4.
Inflamm Res ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844677

ABSTRACT

BACKGROUND: Inflammatory macrophage infiltration plays a critical role in acute kidney disease induced by ischemia-reperfusion (IRI-AKI). Calycosin is a natural flavone with multiple bioactivities. This study aimed to investigate the therapeutic role of calycosin in IRI-AKI and its underlying mechanism. METHODS: The renoprotective and anti-inflammatory effects of calycosin were analyzed in C57BL/6 mice with IRI-AKI and lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. RNA-seq was used for mechanism investigation. The molecular target of calycosin was screened by in silico methods and validated by surface plasmon resonance (SPR). Macrophage chemotaxis was analyzed using Transwell and agarose gel spot assays. RESULTS: Calycosin treatment significantly reduced serum creatinine and urea nitrogen and attenuated tubular destruction in IRI-AKI mice. Additionally, calycosin markedly suppressed NF-κB signaling activation and the expression of inflammatory mediators IL-1ß and TNF-α in IRI-AKI kidneys and LPS-stimulated RAW 264.7 cells. Interestingly, RNA-seq revealed calycosin remarkably downregulated chemotaxis-related pathways in RAW 264.7 cells. Among the differentially expressed genes, Ccl2/MCP-1, a critical chemokine mediating macrophage inflammatory chemotaxis, was downregulated in both LPS-stimulated RAW 264.7 cells and IRI-AKI kidneys. Consistently, calycosin treatment attenuated macrophage infiltration in the IRI-AKI kidneys. Importantly, in silico target prediction, molecular docking, and SPR assay demonstrated that calycosin directly binds to macrophage migration inhibitory factor (MIF). Functionally, calycosin abrogated MIF-stimulated NF-κB signaling activation and Ccl2 expression and MIF-mediated chemotaxis in RAW 264.7 cells. CONCLUSIONS: In summary, calycosin attenuates IRI-AKI by inhibiting MIF-mediated macrophage inflammatory chemotaxis, suggesting it could be a promising therapeutic agent for the treatment of IRI-AKI.

5.
Int Immunopharmacol ; 135: 112303, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38776855

ABSTRACT

Diabetic nephropathy (DN) is a common complication of diabetes, characterized by renal fibrosis and poor patient prognosis. Hederagenin (HDG) has shown promising improvement in chronic kidney disease (CKD) kidney fibrosis, but its mechanism in DN-induced kidney fibrosis remains unclear. In this study, a model of diabetic nephropathy (DN) in mice was induced by intraperitoneal injection of streptozocin (50 mg/kg), while in vitro, high glucose (25 mM) was used to induce HK2 cell damage, simulating tubular injury in DN kidneys. The improvement of HDG treatment intervention was evaluated by observing changes in renal function, pathological structural damage, and the expression of fibrosis-related proteins in renal tubular cells. The results demonstrate that HDG intervention alleviates renal dysfunction and pathological damage in DN mice, accompanied by reduced expression of fibrotic markers α-smooth muscle actin (α-SMA), fibronectin (FN) and Collagen-I. Mechanistically, this study found that HDG can inhibit ferroptosis and fibrosis induced by the ferroptosis inducer Erastin (1 µM) in renal tubular cells. Phosphorylation of Smad3 promotes ferroptosis in renal tubular cells. After using its specific inhibitor SIS3 (4 µM), the expression of downstream target protein NADPH oxidase 4 (NOX4) significantly decreases, while the level of glutathione peroxidase 4 (GPX4) is notably restored, mitigating ferroptosis. Smad3 overexpression attenuates the therapeutic effect of HDG on tubular cell fibrosis induced by high glucose. These results demonstrate HDG inhibits Smad3 phosphorylation, thereby reducing the expression of NOX4 and enhancing the expression of GPX4, ultimately attenuating ferroptosis induced renal fibrosis. These findings suggest that HDG offer therapeutic potential for DN renal fibrosis by targeting Smad3-mediated ferroptosis in renal tubular cells.


Subject(s)
Diabetic Nephropathies , Ferroptosis , Fibrosis , Mice, Inbred C57BL , NADPH Oxidase 4 , Oleanolic Acid , Signal Transduction , Smad3 Protein , Animals , Ferroptosis/drug effects , Smad3 Protein/metabolism , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/pathology , Diabetic Nephropathies/metabolism , NADPH Oxidase 4/metabolism , NADPH Oxidase 4/genetics , Humans , Mice , Signal Transduction/drug effects , Male , Cell Line , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/pharmacology , Oleanolic Acid/therapeutic use , Kidney Tubules/pathology , Kidney Tubules/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism
6.
Adv Sci (Weinh) ; 10(32): e2304360, 2023 11.
Article in English | MEDLINE | ID: mdl-37749872

ABSTRACT

Podocyte injury plays a critical role in the progression of focal segmental glomerulosclerosis (FSGS). Here, it is reported that B-cell translocation gene 2 (Btg2) promotes Adriamycin (ADR)-induced FSGS via Smad3-dependent podocyte-mesenchymal transition. It is found that in FSGS patients and animal models, Btg2 is markedly upregulated by podocytes and correlated with progressive renal injury. Podocyte-specific deletion of Btg2 protected against the onset of proteinuria and glomerulosclerosis in ADR-treated mice along with inhibition of EMT markers such as α-SMA and vimentin while restoring epithelial marker E-cadherin. In cultured MPC5 podocytes, overexpression of Btg2 largely promoted ADR and TGF-ß1-induced EMT and fibrosis, which is further enhanced by overexpressing Btg2 but blocked by disrupting Btg2. Mechanistically, Btg2 is rapidly induced by TGF-ß1 and then bound Smad3 but not Smad2 to promote Smad3 signaling and podocyte EMT, which is again exacerbated by overexpressing Btg2 but blocked by deleting Btg2 in MPC5 podocytes. Interestingly, blockade of Smad3 signaling with a Smad3 inhibitor SIS3 is also capable of inhibiting Btg2 expression and Btg2-mediated podocyte EMT, revealing a TGF-ß/Smad3-Btg2 circuit mechanism in Btg2-mediated podocyte injury in FSGS. In conclusion, Btg2 is pathogenic in FSGS and promotes podocyte injury via a Smad3-dependent EMT pathway.


Subject(s)
Glomerulosclerosis, Focal Segmental , Podocytes , Animals , Humans , Mice , Doxorubicin/pharmacology , Glomerulosclerosis, Focal Segmental/chemically induced , Glomerulosclerosis, Focal Segmental/metabolism , Glomerulosclerosis, Focal Segmental/pathology , Kidney/metabolism , Podocytes/metabolism , Podocytes/pathology , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/metabolism
7.
World J Stem Cells ; 15(6): 617-631, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37424951

ABSTRACT

BACKGROUND: Bone marrow-derived mesenchymal stem cells (MSCs) show podocyte-protective effects in chronic kidney disease. Calycosin (CA), a phytoestrogen, is isolated from Astragalus membranaceus with a kidney-tonifying effect. CA preconditioning enhances the protective effect of MSCs against renal fibrosis in mice with unilateral ureteral occlusion. However, the protective effect and underlying mechanism of CA-pretreated MSCs (MSCsCA) on podocytes in adriamycin (ADR)-induced focal segmental glomerulosclerosis (FSGS) mice remain unclear. AIM: To investigate whether CA enhances the role of MSCs in protecting against podocyte injury induced by ADR and the possible mechanism involved. METHODS: ADR was used to induce FSGS in mice, and MSCs, CA, or MSCsCA were administered to mice. Their protective effect and possible mechanism of action on podocytes were observed by Western blot, immunohistochemistry, immunofluorescence, and real-time polymerase chain reaction. In vitro, ADR was used to stimulate mouse podocytes (MPC5) to induce injury, and the supernatants from MSC-, CA-, or MSCsCA-treated cells were collected to observe their protective effects on podocytes. Subsequently, the apoptosis of podocytes was detected in vivo and in vitro by Western blot, TUNEL assay, and immunofluorescence. Overexpression of Smad3, which is involved in apoptosis, was then induced to evaluate whether the MSCsCA-mediated podocyte protective effect is associated with Smad3 inhibition in MPC5 cells. RESULTS: CA-pretreated MSCs enhanced the protective effect of MSCs against podocyte injury and the ability to inhibit podocyte apoptosis in ADR-induced FSGS mice and MPC5 cells. Expression of p-Smad3 was upregulated in mice with ADR-induced FSGS and MPC5 cells, which was reversed by MSCCA treatment more significantly than by MSCs or CA alone. When Smad3 was overexpressed in MPC5 cells, MSCsCA could not fulfill their potential to inhibit podocyte apoptosis. CONCLUSION: MSCsCA enhance the protection of MSCs against ADR-induced podocyte apoptosis. The underlying mechanism may be related to MSCsCA-targeted inhibition of p-Smad3 in podocytes.

8.
Cell Death Discov ; 9(1): 140, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37117184

ABSTRACT

Psoriasis is currently considered to be an immune and inflammatory disease characterized by massive immune cells infiltration including macrophages. It has been reported that macrophage-inducible C-type lectin (Mincle) is essential to maintain the pro-inflammatory phenotype of M1 macrophages, however, its role and mechanisms in psoriasis remain largely unknown. A model of psoriasis was induced in mice by a daily topical application of imiquimod for 7 days. Role and mechanisms of Mincle in macrophage-mediated psoriasis were investigated in clodronate liposomes induced macrophage depletion mice followed by adoptively transferring with Mincle-expressing or -knockout (KO) macrophages, and in macrophage specific Mincle knockout mice (Mincleloxp/loxp/Lyz2-cre+/+). Finally, a Mincle neutralizing antibody was employed to the psoriasis mice to reveal the therapeutic potential for psoriasis by targeting Mincle. Mincle was highly expressed by M1 macrophages in the skin lesions of patients and mice with psoriasis. Clodronate liposomes-induced macrophage depletion inhibited psoriasis in mice, which was restored by adoptive transfer with Mincle-expressing macrophages but not by Mincle-KO macrophages. This was further confirmed in macrophage-specific Mincle-KO mice. Mechanistically, macrophages mediated psoriasis via the Mincle-Syk-NF-κB pathway as blocking macrophage Mincle inhibited Syk/NF-κB-driven skin lesions and epidermal injury in vivo and in vitro. We also found that LPS induced Mincle expression by M1 macrophages via the PU.1-dependent mechanism. Most importantly, we revealed that targeting Mincle with a neutralizing antibody significantly improved psoriasis in mice. In summary, our findings demonstrated that macrophages mediate psoriasis in mice via the Mincle-dependent mechanism, targeting Mincle may represent as a novel therapy for psoriasis. A simplified pathway model of Mincle in macrophage-mediated psoriasis.

9.
Int Immunopharmacol ; 118: 110122, 2023 May.
Article in English | MEDLINE | ID: mdl-37023701

ABSTRACT

Interstitial fibrosis is the key pathological characteristics of chronic kidney diseases (CKD). In this study, we reported that hederagenin (HDG) can effectively improve the renal interstitial fibrosis and its mechanism. We constructed CKD animal models of ischemia reperfusion injury (IRI) and unilateral ureteral obstruction (UUO) respectively to observe the improvement effect of HDG on CKD. The results showed that HDG can effectively improve the pathological structure of kidney and the renal fibrosis in CKD mice. Meanwhile, HDG can also significantly reduce the expression of α-SMA and FN induced by TGF-ß in Transformed C3H Mouse Kidney-1 (TCMK1) cells. Mechanistically, we performed transcriptome sequencing on UUO kidneys treated with HDG. By real time PCR screening of the sequencing results, we determined that ISG15 plays an important role in the intervention of HDG in CKD. Subsequently, we knocked-down ISG15 in TCMK1 and found that ISG15 knock-down significantly inhibited TGF-ß-induced fibrotic protein expression and JAK/STAT activation. Finally, we performed electrotransfection and used liposomes to transfect ISG15 overexpression plasmids to up-regulate ISG15 in kidney and cells, respectively. We found that ISG15 can aggravate renal tubular cell fibrosis and abolish the protection of HDG on CKD. These results indicated that HDG significantly improves renal fibrosis in CKD by inhibiting ISG15 and its downstream JAK/STAT signaling pathway, which provides a new drug and research target for the subsequent treatment of CKD.


Subject(s)
Renal Insufficiency, Chronic , Ureteral Obstruction , Mice , Animals , Mice, Inbred C3H , Kidney/pathology , Renal Insufficiency, Chronic/pathology , Ureteral Obstruction/drug therapy , Signal Transduction , Transforming Growth Factor beta/metabolism , Fibrosis , Transforming Growth Factor beta1/metabolism
10.
J Pharmacol Sci ; 151(2): 72-83, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36707181

ABSTRACT

Bone marrow-derived mesenchymal stem cells (MSCs) show antifibrotic activity in various chronic kidney diseases. Here, we aimed to investigate whether Calycosin (CA), a phytoestrogen, could enhance the antifibrotic activity of MSCs in primary tubular epithelial cells (PTECs) induced by TGF-ß1 and in a mouse model of unilateral ureteral obstruction (UUO). We found that MSCs treatment significantly inhibited fibrosis, and CA pretreatment enhanced the effects of MSCs on fibrosis in vitro. Consistent with the in vitro studies, MSCs alleviated tubular injury and renal fibrosis in mice after UUO, and CA-pretreated MSCs resulted in more significant improvements in tubular injury and renal fibrosis than MSCs after UUO. Moreover, MSCs treatment significantly inhibited necroptosis by repressing the elevation of MLKL, RIPK1, and RIPK3 in PTECs treated by TGF-ß1and in mice after UUO, and CA-pretreated MSCs were superior to MSCs in alleviating necroptosis. MSCs significantly reduced TNF-α and TNFR1 expression induced by TGF-ß1 in PTECs and inhibited TGF-ß1, TNF-α, and TNFR1 expression induced by UUO in mice. These effects of MSCs were significantly enhanced after CA pretreatment. Therefore, our results suggest that CA pretreatment enhances the antifibrotic activity of MSCs by inhibiting TGF-ß1/TNF-α/TNFR1 signaling-induced necroptosis.


Subject(s)
Mesenchymal Stem Cells , Renal Insufficiency, Chronic , Ureteral Obstruction , Mice , Animals , Ureteral Obstruction/complications , Ureteral Obstruction/therapy , Transforming Growth Factor beta1/metabolism , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/metabolism , Tumor Necrosis Factor-alpha/metabolism , Necroptosis , Renal Insufficiency, Chronic/metabolism , Fibrosis , Kidney/pathology
11.
Int J Biol Sci ; 19(2): 521-536, 2023.
Article in English | MEDLINE | ID: mdl-36632461

ABSTRACT

Neuropeptide Y (NPY) is produced by the nerve system and may contribute to the progression of CKD. The present study found the new protective role for NPY in AKI in both patients and animal models. Interestingly, NPY was constitutively expressed in blood and resident kidney macrophages by co-expressing NPY and CD68+ markers, which was lost in patients and mice with AKI-induced by cisplatin. Unexpectedly, NPY was renoprotective in AKI as mice lacking NPY developed worse renal necroinflammation and renal dysfunction in cisplatin and ischemic-induced AKI. Importantly, NPY was also a therapeutic agent for AKI because treatment with exogenous NPY dose-dependently inhibited cisplatin-induced AKI. Mechanistically, NPY protected kidney from AKI by inactivating M1 macrophages via the Y1R-NF-κB-Mincle-dependent mechanism as deleting or silencing NPY decreased Y1R but increased NF-κB-Mincle-mediated M1macrophage activation and renal necroinflammation, which were reversed by addition of NPY or by silencing Mincle but promoted by blocking Y1R with BIBP 3226. Thus, NPY is renoprotective and may be a novel therapeutic agent for AKI. NPY may act via Y1R to protect kidney from AKI by blocking NF-κB-Mincle-mediated M1 macrophage activation and renal necroinflammation.


Subject(s)
Acute Kidney Injury , NF-kappa B , Neuropeptide Y , Receptors, Neuropeptide Y , Animals , Mice , Acute Kidney Injury/drug therapy , Acute Kidney Injury/chemically induced , Cisplatin/pharmacology , Kidney/drug effects , Kidney/metabolism , Macrophages/drug effects , Macrophages/metabolism , Neuropeptide Y/metabolism , Neuropeptide Y/pharmacology , Neuropeptide Y/therapeutic use , Receptors, Neuropeptide Y/metabolism
12.
J Ethnopharmacol ; 302(Pt B): 115917, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36414215

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Huanglian Jiedu plaster (HJP) is a kind of Chinese patent medicine that contains four medicinal plants. It has been clinically proven to be beneficial for the treatment of tumor-associated radiation dermatitis. However, the underlying mechanism of HJP on radiation dermatitis remains unclear. AIM OF THE STUDY: This study aims to investigate the therapeutic effect of HJP on X-ray-induced radiation dermatitis, and how HJP improves the inflammatory response and skin damage of radiation dermatitis. MATERIALS AND METHODS: In this study, We selected a case of esophageal cancer as a clinical demonstration of the efficacy of radiation dermatitis. The patient received a total radiation dose of 7000cGY, and treatment by HJP for 14 days.RD mouse models were established through continuous irradiation with X-ray (800cGY) on the right hind limb of mice for 5 days, and the treatment group mice was applied HJP to the irradiated skin for 15 days from modeling. An inflammatory cellular model was induced through irradiation with X-ray (100cGY) in JB6 cells and a co-culture system of JB6 cell and macrophage was established to examine the effect and mechanism of HJP on the inflammatory interaction of these two cells. The activation of HMGB1-TLR4-NF-κB signaling pathway, and the levels of epidermal injury related factors and inflammatory cytokins were subsequently detected. RESULTS: The results showed that HJP can significantly alleviate X-ray-induced skin injury, inhibiting skin inflammation and reducing the expression of inflammatory cytokins (IL-1ß, IL-6, TNF-α) and epidermal damage related factors (Integrin ß1, CXCL9 and Cytokeratin17), as well as significantly down-regulated the protein level of HMGB1 (a key DAMPs factor) in vivo and in vitro. Cell co-culture experiments demonstrated that HMGB1 released from X-ray-induced JB6 cells can promote inflammatory response of macrophage, which then feedback aggravate epithelial cell damage, notably, HJP can significantly improve radiation skin lesion by inhibiting HMGB1-mediated inflammatory interaction between epithelial cells and macrophages. CONCLUSION: In summary, these findings indicated the role of HJP in the treatment of RD by inhibiting the inflammatory interaction between macrophage and JB6 cells mediated by HMGB1, which may provide a reliable therapeutic method for RD. Furthermore, HMGB1 may be an effective target for HJP to inhibit inflammation and ameliorate skin damage in RD.


Subject(s)
Dermatitis , HMGB1 Protein , Mice , Animals , X-Rays , Macrophages , Inflammation
13.
Int Immunopharmacol ; 112: 109247, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36155281

ABSTRACT

BACKGROUND: Acute kidney injury (AKI), a kidney disease with high morbidity and mortality, is characterized by a dramatic decline in renal function. Hederagenin (HDG), a pentacyclic triterpenoid saponin isolated from astragalus membranaceus, has been shown to have significant anti-inflammatory effects on various diseases. However, the effects of HDG on renal injury and inflammation in AKI has not been elucidated. METHODS: In this research, mice model of AKI was established by intraperitoneal injection of cisplatin in vivo, the inflammatory model of renal tubular epithelial cells was established by LPS stimulation in vitro, and HDG was used to intervene in vitro and in vivo models. Transcriptome sequencing was used to analyze the alterations of LncRNA and mRNA expression in AKI model and LncRNA-A330074k22Rik (A33) knockdown cells, respectively. Renal in situ electrotransfer knockdown plasmid was used to establish mice model of AKI with low expression of A33 in kidney. RESULTS: The results showed that HDG effectively alleviate cisplatin-induced kidney injury and inflammation in mice. Transcriptome sequencing results showed that multiple LncRNAs in kidney of AKI model exhibited significant changes, among which LncRNA-A33 had the most obvious change trend. Subsequent results showed that A33 was highly expressed in kidney of AKI mice and LPS-induced renal tubular cells. After in situ renal electroporation knockdown plasmid down-regulated A33 in kidney of AKI mice, it was found that inhibition of A33 could significantly relieve cisplatin-induced kidney injury and inflammation of AKI, while HDG could effectively suppress the expression of A33 in vitro and in vivo, respectively. Subsequently, transcriptome sequencing was again used to analyze the changes in mRNA expression of renal tubular cells after A33 knockdown by siRNA. The results showed that a large number of inflammation-related signaling pathways were down-regulated, Axin2 and its downstream ß-catenin signal were significantly inhibited. Cell recovery test showed that HDG inhibited Axin2/ß-catenin signal by down-regulating A33, and improved kidney injury and inflammation of AKI. CONCLUSION: Taken together, HDG significantly ameliorated cisplatin-induced kidney injury through LncRNA-A330074k22Rik/Axin2/ß-catenin signal axis, which providing a potential therapeutic approach for the treatment of AKI.


Subject(s)
Acute Kidney Injury , Oleanolic Acid , RNA, Long Noncoding , Saponins , Mice , Animals , Cisplatin/therapeutic use , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , beta Catenin/metabolism , Lipopolysaccharides/pharmacology , RNA, Small Interfering/metabolism , Mice, Inbred C57BL , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/genetics , Oleanolic Acid/pharmacology , Kidney , Inflammation/metabolism , Disease Models, Animal , Anti-Inflammatory Agents/therapeutic use , Saponins/pharmacology , RNA, Messenger/metabolism
14.
Front Pharmacol ; 13: 850060, 2022.
Article in English | MEDLINE | ID: mdl-35431931

ABSTRACT

Background: Intracerebral hemorrhage (ICH) is a debilitating and fatal condition with continuously rising incidence globally, without effective treatment available. Zhilong Huoxue Tongyu (ZLHXTY) capsule is a traditional Chinese medicine that is used for ICH treatment in China. However, the evidence based mechanism is not clear. Purpose: To study the protective effects of ZLHXTY capsules against ICH pathogenesis via targetting nuclear factor kappa ß (NFкß) canonical signalling pathway. Methods: C57BL/6 J mice ICH models using autologous blood injection were used to study the effect of ZLHXTY (1.4 g/kg P.O.) after 24 and 72 hrs of ICH induction. The neurological scoring, corner turn test and balance beam with scoring was performed to assess neurological damage. Hematoxylin/eosin and nissl staining was used for histopathological evaluation. Levels of TNFα, NFкB, iNOS, COX2, IL1, IL6 were measured using real time qPCR and western blotting. Protein levels of IKKß and IкBα were analyzed through western blotting. Immunofluorescence for co-expression of NeuN/TNFα, NeuN/NFкB, Iba1/TNFα, and Iba1/NFкB was also performed. Results: Treatment with ZLHXTY capsules after ICH ameliorated inflammatory brain injury after 24 and 72 h; revealed by neurological scoring, hematoxylin/eosin and nissl staining. The qPCR and western blot analyses demonstrated significant downregulation of TNFα, NFкB, iNOS, COX2, IL1ß and IL6. Further, the IKKß and IкBα revealed significant downregulation and upregulation respectively in western blot. Immunofluorescence also revealed attenuated expression of TNFα and NFкB in neurons and also low expression of Iba1. Conclusion: ZLHXTY capsules elicit its neuroprotective effect by targetting the NFÐºß canonical signalling pathway, thereby ameliorating the ICH induced brain injury.

15.
Theranostics ; 12(1): 379-395, 2022.
Article in English | MEDLINE | ID: mdl-34987651

ABSTRACT

Rationale: Poor ß cell proliferation is one of the detrimental factors hindering islet cell replacement therapy for patients with diabetes. Smad3 is an important transcriptional factor of TGF-ß signaling and has been shown to promote diabetes by inhibiting ß cell proliferation. Therefore, we hypothesize that Smad3-deficient islets may be a novel cell replacement therapy for diabetes. Methods: We examined this hypothesis in streptozocin-induced type-1 diabetic mice and type-2 diabetic db/db mice by transplanting Smad3 knockout (KO) and wild type (WT) islets under the renal capsule, respectively. The effects of Smad3KO versus WT islet replacement therapy on diabetes and diabetic kidney injury were examined. In addition, RNA-seq was applied to identify the downstream target gene underlying Smad3-regulated ß cell proliferation in Smad3KO-db/db versus Smad3WT-db/db mouse islets. Results: Compared to Smad3WT islet therapy, treatment with Smad3KO islets produced a much better therapeutic effect on both type-1 and type-2 diabetes by significantly lowering serum levels of blood glucose and HbA1c and protected against diabetic kidney injuries by preventing an increase in serum creatinine and the development of proteinuria, mesangial matrix expansion, and fibrosis. These were associated with a significant increase in grafted ß cell proliferation and blood insulin levels, resulting in improved glucose intolerance. Mechanistically, RNA-seq revealed that compared with Smad3WT-db/db mouse islets, deletion of Smad3 from db/db mouse islets markedly upregulated E2F3, a pivotal regulator of cell cycle G1/S entry. Further studies found that Smad3 could bind to the promoter of E2F3, and thus inhibit ß cell proliferation via an E2F3-dependent mechanism as silencing E2F3 abrogated the proliferative effect on Smad3KO ß cells. Conclusion: Smad3-deficient islet replacement therapy can significantly improve both type-1 and type-2 diabetes and protect against diabetic kidney injury, which is mediated by a novel mechanism of E2F3-dependent ß cell proliferation.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/metabolism , E2F3 Transcription Factor/metabolism , Insulin-Secreting Cells/metabolism , Smad3 Protein/metabolism , Animals , Insulin-Secreting Cells/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout
16.
BMC Complement Med Ther ; 22(1): 17, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35057768

ABSTRACT

BACKGROUND: Diabetic nephropathy (DN) is one of the main causes of end-stage renal disease with scantly effective treatment. Numerous evidences indicated that macrophages play an important role in the occurrence and pathogenesis of DN by secreting inflammatory cytokines. Mincle is mainly expressed in macrophages and promotes kidney inflammation and damage of acute kidney injury. However, the role of Mincle in DN is unclear. In this study, we aim to investigate the effect of Mincle-related macrophage inflammation on DN, and whether it can be identified as the therapeutic target for Astragalus mongholicus Bunge and Panax notoginseng Formula (A&P), a widely used Chinese herbal decoction for DN treatment. METHODS: In vivo experiments high-fat and high-sugar diet and streptozotocin was used to establish a diabetic nephropathy model, while in vitro experiments inflammation model was induced by high-glucose in mouse Bone Marrow-Derived Macrophages (BMDM) cells and mouse mesangial (MES) cells. Kidney pathological staining is used to detect kidney tissue damage and inflammation, Western blotting, Real-time PCR and ELISA are performed to detect Mincle signaling pathway related proteins and inflammatory cytokines. RESULTS: Mincle was mainly expressed in infiltrated macrophage of DN kidney, and was significant decreased after A&P administration. The in vitro experiments also proved that A&P effectively down-regulated the expression of Mincle in macrophage stimulated by high glucose. Meanwhile, the data demonstrated that A&P can reduce the activation of NFκB, and the expression and secretion of inflammatory cytokines in DN kidney or BMDM cells. Notably, we set up a co-culture system to conform that BMDM cells can aggravate the inflammatory response of mesangial (MES) cells under high glucose stimulation. Furthermore, we found that the anti-injury role of A&P in MES cells was dependent on inhibition of the Mincle in macrophage. CONCLUSION: In summary, our study found that A&P is effective in reducing renal pathological damage and improving renal function and inflammation in diabetic nephropathy by a mechanism mainly related to the inhibition of the Mincle/Card9/NFκB signaling pathway.


Subject(s)
Astragalus propinquus , Diabetic Nephropathies/drug therapy , Drugs, Chinese Herbal/pharmacology , Lectins, C-Type/metabolism , Macrophages/drug effects , Membrane Proteins/metabolism , Mesangial Cells/drug effects , Panax notoginseng , Animals , CARD Signaling Adaptor Proteins/metabolism , Kidney/drug effects , Male , Mice , Mice, Inbred C57BL , Models, Animal , NF-kappa B/metabolism , Signal Transduction/drug effects
17.
Am J Physiol Renal Physiol ; 321(4): F517-F526, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34486400

ABSTRACT

Increasing evidence shows that long noncoding RNAs (lncRNAs) play an important role in kidney disease. In this study, we investigated the role of the lncRNA growth arrest-specific 5 (GAS5) in the pathogenesis of renal fibrosis. We found that GAS5 was markedly decreased in the fibrotic kidney of a unilateral ureteral obstructive nephropathy mouse model. In addition, GAS5 was expressed in mouse tubular epithelial cells (mTECs) and interstitial fibroblasts in normal renal tissue and was especially highly expressed in the cytoplasm. In vitro experiments showed that GAS5 was downregulated by transforming growth factor-ß1 (TGF-ß1) in a dose- and time-dependent manner. Overexpression of GAS5 blocked TGF-ß1-induced collagen type I and fibronectin expression and vice versa. Mechanistic experiments revealed that Smad3 but not Smad2 drove the regulation of GAS5. More importantly, GAS5 interacted with miR-142-5p and was involved in the renoprotective effect by participating in the competing endogenous RNA network. Finally, we also found that knockdown of GAS5 promoted TGF-ß1-induced mouse tubular epithelial cell apoptosis via the Smad3 pathway. Taken together, our results uncovered a lncRNA/miRNA competing endogenous RNA network-based mechanism that modulates extracellular matrix formation and cell apoptosis via the Smad3 pathway.NEW & NOTEWORTHY In this work, we mainly discuss long noncoding RNA growth arrest-specific 5 (GAS5), acting in a renoprotective role via the Smad3/miRNA-142-5p axis, that modulates extracellular matrix formation and cell apoptosis. Overexpression of GAS5 effectively blocked renal fibrosis in vitro. This study reveals that GAS5 may represent as a novel and precision therapeutic target for alleviating renal fibrosis.


Subject(s)
Epithelial Cells/drug effects , Kidney Diseases/prevention & control , Kidney Tubules/drug effects , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , Smad3 Protein/metabolism , Transforming Growth Factor beta1/toxicity , Animals , Apoptosis/drug effects , Cell Line , Disease Models, Animal , Epithelial Cells/metabolism , Epithelial Cells/pathology , Fibrosis , Humans , Kidney Diseases/etiology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney Tubules/metabolism , Kidney Tubules/pathology , Mice, Inbred C57BL , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Signal Transduction , Smad3 Protein/genetics , Ureteral Obstruction/complications
18.
J Cell Mol Med ; 25(18): 8775-8788, 2021 09.
Article in English | MEDLINE | ID: mdl-34337860

ABSTRACT

Artesunate is a widely used derivative of artemisinin for malaria. Recent researches have shown that artesunate has a significant anti-inflammatory effect on many diseases. However, its effect on acute kidney injury with a significant inflammatory response is not clear. In this study, we established a cisplatin-induced AKI mouse model and a co-culture system of BMDM and tubular epithelial cells (mTEC) to verify the renoprotective and anti-inflammatory effects of artesunate on AKI, and explored the underlying mechanism. We found that artesunate strongly down-regulated the serum creatinine and BUN levels in AKI mice, reduced the necroptosis of tubular cells and down-regulated the expression of the tubular injury molecule Tim-1. On the other hand, artesunate strongly inhibited the mRNA expression of inflammatory cytokines (IL-1ß, IL-6 and TNF-α), protein levels of inflammatory signals (iNOS and NF-κB) and necroptosis signals (RIPK1, RIPK3 and MLKL) in kidney of AKI mouse. Notably, the co-culture system proved that Mincle in macrophage can aggravate the inflammation and necroptosis of mTEC induced by LPS, and artesunate suppressed the expression of Mincle in macrophage of kidney in AKI mouse. Overexpression of Mincle in BMDM restored the damage and necroptosis inhibited by artesunate in mTEC, indicating Mincle in macrophage is the target of artesunate to protect tubule cells in AKI. Our findings demonstrated that artesunate can significantly improve renal function in AKI, which may be related to the inhibition of Mincle-mediated macrophage inflammation, thereby reducing the damage and necroptosis to tubular cells that provide new option for the treatment of AKI.


Subject(s)
Acute Kidney Injury/drug therapy , Anti-Inflammatory Agents/pharmacology , Artesunate/pharmacology , Inflammation/drug therapy , Necroptosis/drug effects , Animals , Macrophages , Male , Mice , Mice, Inbred C57BL , Primary Cell Culture
19.
Biol Pharm Bull ; 44(5): 714-723, 2021.
Article in English | MEDLINE | ID: mdl-33952827

ABSTRACT

Ischemia-reperfusion injury (IRI) is the major cause of acute kidney injury (AKI). The previous studies demonstrated that Oridonin can protect kidney against IRI-induced AKI, but the underlying molecular mechanism is unclear. In this study, it showed that Oridonin significantly improved kidney damage, and inhibited the expression of interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α and MCP-1, as well as macrophage marker F4/80 in kidney and the secretion of inflammatory cytokins in serum of AKI mice in vivo. In addition, Oridonin also effectively reduced the expression and secretion of lipopolysaccharide (LPS)-induced inflammatory factors in macrophage cell line RAW264.7 in vitro. Notably, Oridonin strongly downregulated Mincle and AKT/nuclear factor-kappaB (NF-κB) signaling both in vivo and in vitro, and the results of cellular recovery experiments of overexpression of Mincle in macrophage suggested that Oridonin suppressed inflammatory response of macrophage through inhibiting Mincle, which may be the underlying mechanism of Oridonin improving injury in kidney of AKI mice. In summary, the above results indicated that Oridonin can protect kidney from IRI-induced inflammation and injury by inhibiting the expression of Mincle in macrophage.


Subject(s)
Acute Kidney Injury/prevention & control , Diterpenes, Kaurane/pharmacology , Macrophages/drug effects , Reperfusion Injury/drug therapy , Acute Kidney Injury/immunology , Acute Kidney Injury/pathology , Animals , Disease Models, Animal , Diterpenes, Kaurane/therapeutic use , Humans , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/metabolism , Kidney/blood supply , Kidney/drug effects , Kidney/immunology , Kidney/pathology , Lectins, C-Type/antagonists & inhibitors , Lectins, C-Type/metabolism , Lipopolysaccharides/administration & dosage , Lipopolysaccharides/immunology , Macrophages/immunology , Male , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Mice , RAW 264.7 Cells , Reperfusion Injury/complications , Reperfusion Injury/immunology
20.
Kidney Blood Press Res ; 46(1): 63-73, 2021.
Article in English | MEDLINE | ID: mdl-33401265

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is a severe clinical syndrome, causing a profound medical and socioeconomic burden worldwide. This study aimed to explore underlying molecular targets related to the progression of AKI. METHODS: A public database originated from the NCBI GEO database (serial number: GSE121190) and a well-established and unbiased method of weighted gene co-expression network analysis (WGCNA) to identify hub genes and potential pathways were used. Furthermore, the unbiased hub genes were validated in 2 classic models of AKI in a rodent model: chemically established AKI by cisplatin- and ischemia reperfusion-induced AKI. RESULTS: A total of 17 modules were finally obtained by the unbiased method of WGCNA, where the genes in turquoise module displayed strong correlation with the development of AKI. In addition, the results of gene ontology revealed that the genes in turquoise module were involved in renal injury and renal fibrosis. Thus, the hub genes were further validated by experimental methods and primarily obtained Rplp1 and Lgals1 as key candidate genes related to the progression of AKI by the advantage of quantitative PCR, Western blotting, and in situ tissue fluorescence. Importantly, the expression of Rplp1 and Lgals1 at the protein level showed positive correlation with renal function, including serum Cr and BUN. CONCLUSIONS: By the advantage of unbiased bioinformatic method and consequent experimental verification, this study lays the foundation basis for the pathogenesis and therapeutic agent development of AKI.


Subject(s)
Acute Kidney Injury/genetics , Gene Regulatory Networks , Acute Kidney Injury/pathology , Animals , Disease Models, Animal , Gene Expression Profiling , Gene Ontology , Genomics , Humans , Kidney/pathology , Male , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL