Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters








Publication year range
1.
Molecules ; 29(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731458

ABSTRACT

Utilizing hydrogen as a viable substitute for fossil fuels requires the exploration of hydrogen storage materials with high capacity, high quality, and effective reversibility at room temperature. In this study, the stability and capacity for hydrogen storage in the Sc-modified C3N4 nanotube are thoroughly examined through the application of density functional theory (DFT). Our finding indicates that a strong coupling between the Sc-3d orbitals and N-2p orbitals stabilizes the Sc-modified C3N4 nanotube at a high temperature (500 K), and the high migration barrier (5.10 eV) between adjacent Sc atoms prevents the creation of metal clusters. Particularly, it has been found that each Sc-modified C3N4 nanotube is capable of adsorbing up to nine H2 molecules, and the gravimetric hydrogen storage density is calculated to be 7.29 wt%. It reveals an average adsorption energy of -0.20 eV, with an estimated average desorption temperature of 258 K. This shows that a Sc-modified C3N4 nanotube can store hydrogen at low temperatures and harness it at room temperature, which will reduce energy consumption and protect the system from high desorption temperatures. Moreover, charge donation and reverse transfer from the Sc-3d orbital to the H-1s orbital suggest the presence of the Kubas effect between the Sc-modified C3N4 nanotube and H2 molecules. We draw the conclusion that a Sc-modified C3N4 nanotube exhibits exceptional potential as a stable and efficient hydrogen storage substrate.

2.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 164-170, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38372099

ABSTRACT

The relationship between gut microbiota dysbiosis and heart failure has been drawing increasing attention. This study aimed to investigate the effects of oligo-xylulose (XOS) on the gut microbiota of mice with heart failure induced by pressure overload. A chronic heart failure mouse model was constructed by pressure overload, and XOS were administered in their diet. The gut microbiota was analyzed using 16S rRNA gene sequencing, and the effects of XOS on the microbiota composition were evaluated. . XOS supplementation improved the balance of intestinal microbiota in mice under pressure overload, increasing the abundance of beneficial bacteria, such as Bifidobacterium and Lactobacillus, while decreasing the abundance of harmful bacteria, such as Desulfovibrio and Enterococcus. XOS has potential as a dietary supplement to improve the balance of intestinal microbiota and benefit individuals with heart failure. The findings of this study suggest that modulating the gut microbiota could be a novel strategy for treating heart failure.


Subject(s)
Gastrointestinal Microbiome , Heart Failure , Animals , Mice , RNA, Ribosomal, 16S/genetics , Xylulose/pharmacology , Genes, rRNA , Heart Failure/genetics
3.
Ultrason Sonochem ; 99: 106571, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37690259

ABSTRACT

Response surface methodology was selected to explore the ultrasonic-assisted cellulase extraction conditions of Garcinia mangostana rind polysaccharides (GMRPs), and the optimum values of each condition were as follows: ratio of raw material to liquid of 1:50 g/mL, ultrasonic time of 40 min, enzyme concentration of 4 %, and ultrasonic power of 179 W. Based on the above conditions, the average extraction rate of GMRPs was 15.56 %. GMRPs were modified by carboxymethylation, and the relationship between the amount of chloroacetic acid and the substitution degree of carboxymethylated derivative was compared. Based on the results of single factor experiment, it was shown that the amount of chloroacetic acid significantly affected the degree of substitution of derivative products. The above research provides some valuable theoretical references for the preparation of GMRPs and its carboxymethylation products.


Subject(s)
Cellulase , Garcinia mangostana , Ultrasonics , Polysaccharides
4.
Ultrason Sonochem ; 97: 106474, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37321072

ABSTRACT

According to response surface methodology (RSM), the extraction conditions of ultrasound-assisted extraction of polysaccharide from the rinds of Garcinia mangostana L. (GMRP) were optimized and determined. The optimal conditions obtained through optimization were: the liquid to material ratio was 40 mL/g, ultrasonic power was 288 W and extraction time was 65 min. The average extraction rate of GMRP was 14.73%. Ac - GMRP was obtained by acetylation of GMRP, and the antioxidant activities of the two polysaccharides were compared in vitro. The results indicated that the antioxidant capacity of polysaccharide obtained after acetylation was significantly improved compared with that of GMRP. In conclusion, chemical modification of polysaccharide is an effective measure to improve its properties to a certain extent. Meanwhile, it implies that GMRP has great research value and potential.


Subject(s)
Antioxidants , Garcinia mangostana , Antioxidants/pharmacology , Antioxidants/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry
5.
Front Bioeng Biotechnol ; 11: 1141247, 2023.
Article in English | MEDLINE | ID: mdl-37051276

ABSTRACT

The durability of bioprosthetic heart valves is always compromised by the inherent antigenicity of biomaterials. Decellularization has been a promising approach to reducing the immunogenicity of biological valves. However, current methods are insufficient in eliminating all immunogenicity from the biomaterials, necessitating the exploration of novel techniques. In this study, we investigated using a novel detergent, fatty alcohol polyoxyethylene ether sodium sulfate (AES), to remove antigens from bovine pericardium. Our results demonstrated that AES treatment achieved a higher pericardial antigen removal rate than traditional detergent treatments while preserving the mechanical properties and biocompatibility of the biomaterials. Moreover, we observed excellent immune tolerance in the in vivo rat model. Overall, our findings suggest that AES treatment is a promising method for preparing biological valves with ideal clinical application prospects.

6.
Front Bioeng Biotechnol ; 11: 1138972, 2023.
Article in English | MEDLINE | ID: mdl-37077226

ABSTRACT

The number of patients with valvular heart disease is increasing yearly, and valve replacement is the most effective treatment, during which bioprosthetic heart valves (BHVs) are the most widely used. Commercial BHVs are mainly prepared with glutaraldehyde (Glut) cross-linked bovine pericardial or porcine aortic valves, but the residual free aldehyde groups in these tissues can cause calcification and cytotoxicity. Moreover, insufficient glycosaminoglycans (GAGs) in tissues can further reduce biocompatibility and durability. However, the anti-calcification performance and biocompatibility might be improved by blocking the free aldehyde groups and increasing the GAGs content in Glut-crosslinked tissues. In our study, adipic dihydrazide (ADH) was used to neutralize the residual free aldehyde groups in tissues and provide sites to blind with oligohyaluronan (OHA) to increase the content of GAGs in tissues. The modified bovine pericardium was evaluated for its content of residual aldehyde groups, the amount of OHA loaded, physical/chemical characteristics, biomechanical properties, biocompatibility, and in vivo anticalcification assay and endothelialization effects in juvenile Sprague-Dawley rats. The results showed that ADH could completely neutralize the free aldehyde groups in the Glut-crosslinked bovine pericardium, the amount of OHA loaded increased and the cytotoxicity was reduced. Moreover, the in vivo results also showed that the level of calcification and inflammatory response in the modified pericardial tissue was significantly reduced in a rat subcutaneous implantation model, and the results from the rat abdominal aorta vascular patch repair model further demonstrated the improved capability of the modified pericardial tissues for endothelialization. Furthermore, more α-SMA+ smooth muscle cells and fewer CD68+ macrophages infiltrated in the neointima of the modified pericardial patch. In summary, blocking free-aldehydes and loading OHA improved the anti-calcification, anti-inflammation and endothelialization properties of Glut-crosslinked BHVs and in particularly, this modified strategy may be a promising candidate for the next-generation of BHVs.

7.
Front Bioeng Biotechnol ; 11: 1109058, 2023.
Article in English | MEDLINE | ID: mdl-36733971

ABSTRACT

Purpose: The absence of a complete endothelial cell layer is a well-recognized reason leading to small-diameter tissue-engineered vascular graft failure. Here we reported a multifunctional system consisting of chitosan (CS), Arg-Glu-Asp-Val (REDV) peptide, heparin, and vascular endothelial growth factor (VEGF) to achieve sustained anti-thrombosis and rapid endothelialization for decellularized and photo-oxidized bovine internal mammary arteries (DP-BIMA). Methods: CS-REDV copolymers were synthesized via a transglutaminase (TGase) catalyzed reaction. CS-REDV-Hep nanoparticles were formed by electrostatic self-assembly and loaded on the DP-BIMA. The quantification of released heparin and vascular endothelial growth factor was detected. Hemolysis rate, platelets adhesion, endothelial cell (EC) adhesion and proliferation, and MTT assay were performed in vitro. The grafts were then tested in a rabbit abdominal aorta interposition model for 3 months. The patency rates were calculated and the ECs regeneration was investigated by immunofluorescence staining of CD31, CD144, and eNOS antibodies. Results: The nanoparticle-VEGF system (particle size: 61.8 ± 18.3 nm, zeta-potential: +13.2 mV, PDI: .108) showed a sustained and controlled release of heparin and VEGF for as long as 1 month and exhibited good biocompatibility, a lower affinity for platelets, and a higher affinity for ECs in vitro. The nanoparticle-VEGF immobilized BIMA achieved 100% and 83.3% patency in a rabbit abdominal interposition model during 1 and 3 months, respectively, without any thrombogenicity and showed CD31, CD144, eNOS positive cell adhesion as early as 1 day. After 3 months, CD31, CD144, and eNOS positive cells covered almost the whole luminal surface of the grafts. Conclusion: The results demonstrated that the multifunctional nanoparticle-VEGF system can enhance the anti-thrombosis property and promote rapid endothelialization of small-diameter tissue-engineered vascular grafts. Utilizing nanoparticles to combine different kinds of biomolecules is an appropriate technology to improve the long-term patency of small-diameter tissue-engineered vascular grafts.

8.
Front Bioeng Biotechnol ; 10: 1008664, 2022.
Article in English | MEDLINE | ID: mdl-36159659

ABSTRACT

The bioprosthetic heart valves (BHVs) are the best option for the treatment of valvular heart disease. Glutaraldehyde (Glut) is commonly used as the golden standard reagent for the crosslinking of BHVs. However, the obvious defects of Glut, including residual aldehyde toxicity, degradation and calcification, increase the probability of valve failure in vivo and motivated the exploration of alternatives. Thus, the aim of this study is to develop a non-glutaraldehyde hybrid cross-linking method composed of Neomycin Trisulfate, Polyethylene glycol diglycidyl ether and Tannic acid as a substitute for Glut, which was proven to reduce calcification, degradation, inflammation of the biomaterial. Evaluations of the crosslinked bovine pericardial included histological and ultrastructural characterization, biomechanical performance, biocompatibility and structural stability test, and in vivo anti-inflammation and anti-calcification assay by subcutaneous implantation in juvenile Sprague Dawley rats. The results revealed that the hybrid crosslinked bovine pericardial were superior to Glut crosslinked biomaterial in terms of better hydrophilicity, thermodynamics stability, hemocompatibility and cytocompatibility, higher Young's Modulus, better stability and resistance to enzymatic hydrolysis, and lower inflammation, degradation and calcification levels in subcutaneous implants. Considering all above performances, it indicates that the hybrid cross-linking method is appropriate to replace Glut as the method for BHV preparation, and particularly this hybrid crosslinked biomaterials may be a promising candidate for next-generation BHVs.

9.
Front Bioeng Biotechnol ; 10: 909771, 2022.
Article in English | MEDLINE | ID: mdl-35903798

ABSTRACT

More than 200,000 patients with aortic diseases worldwide undergo surgical valve replacement each year, and transcatheter heart valves (THV) have been more widely used than ever before. However, THV made by the glutaraldehyde (Glut) crosslinking method has the disadvantage of being prone to calcification, which significantly reduces the durability of biomaterials. In this study, we applied a novel crosslinking method using ribose in THV for the first time, which can decrease calcification and increase the stability of the extracellular matrix (ECM). We incubated the bovine pericardium (BP) in ribose solution at 37°C by shaking for 12 days and confirmed that the structure of the BP was more compact than that of the Glut group. Moreover, the ribose method remarkably enhanced the biomechanical properties and provided reliable resistance to enzymatic degradation and satisfactory cellular compatibility in THV. When the BP was implanted subcutaneously in vivo, we demonstrated that ECM components were preserved more completely, especially in elastin, and the immune-inflammatory response was more moderate than that in the Glut treatment group. Finally, the ribose-cross-linked materials showed better anti-calcification potential and improved durability of THV than Glut-cross-linked materials.

10.
Front Bioeng Biotechnol ; 10: 844010, 2022.
Article in English | MEDLINE | ID: mdl-35662844

ABSTRACT

Bioprosthetic heart valves (BHVs) used in clinics are fabricated via glutaraldehyde (GLUT) crosslinking, which results in cytotoxicity and causes eventual valve calcification after implantation into the human body; therefore, the average lifetime and application of BHVs are limited. To address these issues, the most commonly used method is modification with amino acids, such as glycine (GLY), which is proven to effectively reduce toxicity and calcification. In this study, we used the l-glutathione (GSH) in a new modification treatment based on GLUT-crosslinked bovine pericardium (BP) as the GLUT + GSH group, BPs crosslinked with GLUT as GLUT-BP (control group), and GLY modification based on GLUT-BP as the GLUT + GLY group. We evaluated the characteristics of BPs in different treatment groups in terms of biomechanical properties, cell compatibility, aldehyde group content detection, and the calcification content. Aldehyde group detection tests showed that the GSH can completely neutralize the residual aldehyde group of GLUT-BP. Compared with that of GLUT-BP, the endothelial cell proliferation rate of the GLUT + GSH group increased, while its hemolysis rate and the inflammatory response after implantation into the SD rat were reduced. The results show that GSH can effectively improve the cytocompatibility of the GLUT-BP tissue. In addition, the results of the uniaxial tensile test, thermal shrinkage temperature, histological and SEM evaluation, and enzyme digestion experiments proved that GSH did not affect the ECM stability and biomechanics of the GLUT-BP. The calcification level of GLUT-BP modified using GSH technology decreased by 80%, indicating that GSH can improve the anti-calcification performance of GLUT-BP. Compared with GLUT-GLY, GLUT + GSH yielded a higher cell proliferation rate and lower inflammatory response and calcification level. GSH can be used as a new type of anti-calcification agent in GLUT crosslinking biomaterials and is expected to expand the application domain for BHVs in the future.

11.
Biomed Pharmacother ; 150: 113015, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35468585

ABSTRACT

Radix astragali polysaccharide (RAP) is a water-soluble heteropolysaccharide. It is an immune promoter and regulator, and has antivirus, antitumor, anti-aging, anti-radiation, anti-stress, anti-oxidation and other activitys. The extraction, separation, purification, structure, activity and modification of RAP were summarized. Some extraction methods of RAP had been introduced, and the separation and purification methods of RAP were reviewed, and the structure and activity of RAP were highly discussed. Current derivatization of RAP was outlined. Through the above discussion that the yield of crude polysaccharides from Radix astragali by enzyme-assisted extraction was significantly higher than that by other extraction methods, but each extraction method had different extraction effects under certain conditions, and the activity efficiency of RAP was also different. Therefore, it is particularly important to optimize the extraction method with known better yield for the study of RAP. In addition, the purification and separation of RAP are the key factors affecting the yield and activity of RAP. At the same time, there are still few studies on the derivatiration of Radix astragali polysaccharide, but the researches in this area are very important. RAP also has many important pharmacological effects on human body, but its practical application needs further study. Finally, studies on the structure-activity relationship of RAP still need to be carried out by many scholars. This review would provide some help for further researches on various important applications of RAP.


Subject(s)
Drugs, Chinese Herbal , Aging , Astragalus propinquus , Dietary Carbohydrates , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Humans , Polysaccharides/chemistry , Polysaccharides/pharmacology
12.
Front Bioeng Biotechnol ; 10: 816513, 2022.
Article in English | MEDLINE | ID: mdl-35402413

ABSTRACT

Small-diameter vascular grafts have a significant need in peripheral vascular surgery and procedures of coronary artery bypass graft (CABG); however, autografts are not always available, synthetic grafts perform poorly, and allografts and xenografts dilate, calcify, and induce inflammation after implantation. We hypothesized that cross-linking of decellularized xenogeneic vascular grafts would improve the mechanical properties and biocompatibility and reduce inflammation, degradation, and calcification in vivo. To test this hypothesis, the bovine internal mammary artery (BIMA) was decellularized by detergents and ribozymes with sonication and perfusion. Photooxidation and pentagalloyl glucose (PGG) were used to cross-link the collagen and elastin fibers of decellularized xenografts. Modified grafts' characteristics and biocompatibility were studied in vitro and in vivo; the grafts were implanted as transposition grafts in the subcutaneous of rats and the abdominal aorta of rabbits. The decellularized grafts were cross-linked by photooxidation and PGG, which improved the grafts' biomechanical properties and biocompatibility, prevented elastic fibers from early degradation, and reduced inflammation and calcification in vivo. Short-term aortic implants in the rabbits showed collagen regeneration and differentiation of host smooth muscle cells. No occlusion and stenosis occurred due to remodeling and stabilization of the neointima. A good patency rate (100%) was maintained. Notably, implantation of non-treated grafts exhibited marked thrombosis, an inflammatory response, calcification, and elastin degeneration. Thus, photooxidation and PGG cross-linking are potential tools for improving grafts' biological performance within decellularized small-diameter vascular xenografts.

13.
Front Bioeng Biotechnol ; 10: 1066266, 2022.
Article in English | MEDLINE | ID: mdl-36605251

ABSTRACT

Small-diameter vascular grafts (diameter <6 mm) are in high demand in clinical practice. Neointimal hyperplasia, a common complication after implantation of small-diameter vascular grafts, is one of the common causes of graft failure. Modulation of local inflammatory responses is a promising strategy to attenuates neointimal hyperplasia. Vascular endothelial growth factor (VEGF) is an angiogenesis stimulator that also induces macrophage polarization and modulates inflammatory responses. In the present study, we evaluated the effect of VEGF on the neointima hyperplasia and local inflammatory responses of decellularized vascular grafts. In the presence of rhVEGF-165 in RAW264.6 macrophage culture, rhVEGF-165 induces RAW264.6 macrophage polarization to M2 phenotype. Decellularized bovine internal mammary arteries were implanted into the subcutaneous and infrarenal abdominal aorta of New Zealand rabbits, with rhVEGF-165 applied locally to the adventitial of the grafts. The vascular grafts were removed en-bloc and submitted to histological and immunofluorescence analyses on days 7 and 28 following implantation. The thickness of the fibrous capsule and neointima was thinner in the VEGF group than that in the control group. In the immunofluorescence analysis, the number of M2 macrophages and the ratio of M2/M1 macrophages in vascular grafts in the VEGF group were higher than those in the control group, and the proinflammatory factor IL-1 was expressed less than in the control group, but the anti-inflammatory factor IL-10 was expressed more. In conclusion, local VEGF administration attenuates neointimal hyperplasia in decellularized small-diameter vascular grafts by inducing macrophage M2 polarization and modulating the inflammatory response.

14.
Front Bioeng Biotechnol ; 9: 766991, 2021.
Article in English | MEDLINE | ID: mdl-34820366

ABSTRACT

Transcatheter aortic valve implantation (TAVI) has received much attention and development in the past decade due to its lower risk of complication and infections compared to a traditional open thoracotomy. However, the current commercial transcatheter heart valve does not fully meet clinical needs; therefore, new biological materials must be found in order to meet these requirements. We have discovered a new type of biological material, the yak pericardium. This current research studied its extracellular matrix structure, composition, mechanical properties, and amino acid content. Folding experiment was carried out to analyze the structure and mechanics after folding. We also conducted a subcutaneous embedding experiment to analyze the inflammatory response and calcification after implantation. Australian bovine pericardium, local bovine pericardium, and porcine pericardium were used as controls. The overall structure of the yak pericardium is flat, the collagen runs regularly, it has superior mechanical properties, and the average thickness is significantly lower than that of the Australian bovine and the local bovine pericardium control groups. The yak pericardium has a higher content of elastic fibers, showing that it has a better compression resistance effect during the folding experiment as well as having less expression of transplantation-related antigens. We conducted in vivo experiments and found that the yak pericardium has less inflammation and a lower degree of calcification. In summary, the yak pericardium, which is thin and strong, has lower immunogenicity and outstanding anti-calcification effects may be an excellent candidate valve leaflet material for TAVI.

15.
Thorac Cancer ; 9(4): 445-451, 2018 04.
Article in English | MEDLINE | ID: mdl-29473341

ABSTRACT

BACKGROUND: To identify whether RET is a potential target for NSCLC treatment, we examined the status of the RET gene in 631 early and mid stage NSCLC cases from south central China. METHODS: RET expression was identified by Western blot. RET-positive expression samples were verified by immunohistochemistry. RET gene mutation, copy number variation, and rearrangement were analyzed by DNA Sanger sequencing, TaqMan copy number assays, and reverse transcription-PCR. ALK and ROS1 expression levels were tested by Western blot and EGFR mutation using Sanger sequencing. RESULTS: The RET-positive rate was 2.5% (16/631). RET-positive expression was related to poorer tumor differentiation (P < 0.05). In the 16 RET-positive samples, only two samples of moderately and poorly differentiated lung adenocarcinomas displayed RET rearrangement, both in RET-KIF5B fusion partners. Neither ALK nor ROS1 translocation was found. The EGFR mutation rate in RET-positive samples was significantly lower than in RET-negative samples (P < 0.05). CONCLUSION: RET-positive expression in early and mid stage NSCLC cases from south central China is relatively low and is related to poorer tumor differentiation. RET gene alterations (copy number gain and rearrangement) exist in all RET-positive samples. RET-positive expression is a relatively independent factor in NSCLC patients, which indicates that the RET gene may be a novel target site for personalized treatment of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , DNA Copy Number Variations/genetics , Gene Rearrangement , Proto-Oncogene Proteins c-ret/genetics , Aged , Anaplastic Lymphoma Kinase/genetics , Carcinoma, Non-Small-Cell Lung/pathology , China , ErbB Receptors/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Kinesins/genetics , Male , Middle Aged , Mutation , Oncogene Proteins, Fusion/genetics , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins/genetics
16.
Appl Opt ; 56(34): 9601-9605, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29216079

ABSTRACT

A simple five-band terahertz metamaterial perfect absorber, composed of an asymmetric double-gap square split ring and a metallic ground plate spaced by a thin polyimide dielectric layer, is proposed and theoretically investigated. The results show that it can perform absorption peaks at five resonant frequencies whose peaks average 98.85%. The perfect absorption is mainly attributed to the combined effect of LC, dipole, and surface response of the structure. Compared to previously reported multiband absorbers, our design only has a single and compact structure, which can drastically simplify the design and fabrication process. Furthermore, the resonance absorption properties of the absorber can be tuned by changing the geometric parameters of the structure. Such a simple and effective design holds great promise for potential applications in spectroscopic imaging, biological sensing, and detecting of drugs and explosives.

17.
Nanoscale Res Lett ; 12(1): 270, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28410556

ABSTRACT

In this work, high-k composite TiAlO film has been investigated as charge-trapping material for nonvolatile memory applications. The annealing formed Al2O3-TiAlO-SiO2 dielectric stack demonstrates significant memory effects and excellent reliability properties. The memory device exhibits a large memory window of ~2.6 V under ±8 V sweeping voltage, and it shows only ~14% charge loss after more than 10 years' retention, indicating excellent charge retention properties. The electronic structures of the Al2O3-TiAlO-SiO2 have been studied by X-ray photoelectron spectroscopy measurements, and it reveals that the quantum well and the defect traps in TiAlO film can provide a >1.8 eV deep barrier for charge confinement in the TiAlO layer. The mixing between Al2O3 and TiO2 can increase the defects related to the under-coordinated Ti3+ atoms, thereby enhancing the charge-trapping efficiency of the device. Our work implies that high-k TiAlO composite film is promising for applications in future nonvolatile charge-trapping memories.

18.
Int J Oncol ; 50(1): 252-262, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27878251

ABSTRACT

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays an important role in multiple cellular functions including metabolism and gene transcription. Our previous study showed that GAPDH expression was elevated in colon cancer and further upregulated in liver metastatic tissues, suggesting a possilbe role of GAPDH in promoting cancer metastasis. The present study was designed to investigate the underlying mechanism, using multiple experimental approaches including genetic silencing of GAPDH expression by short hairpin RNA (shRNA) and biochemcial/molecular analyses of the key events involved in glycolytic metabolism and epithelial-mesenchymal transition (EMT). We showed that silencing of GAPDH expression resulted in a significant reduction of glycolysis in colon cancer cell lines, accompanied by a decrease in cell proliferation and an apparent change in cell morphology associated with alterations in actin expression and phalloidine staining patterns. Furthermore, GAPDH suppression also caused a downregulation of gene expression involved in cancer stem-like cells and EMT. CHIP assay and co-immunoprecipitation revealed that GAPDH physically interacted with the transcriptional factor Sp1 and enhance the expression of SNAIL, a major regulator of EMT. Suppression of GAPDH expression resulted in a signficant decrease in SNAIL expression, leading to inhibition of EMT and attenuation of colon cancer cell migration in vitro and reduced metastasis in vivo. Overall, the present study suggests that GAPDH plays an important role in cancer metastasis by affecting EMT through regulation of Sp1-mediated SNAIL expression.


Subject(s)
Colonic Neoplasms/genetics , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Liver Neoplasms/genetics , Snail Family Transcription Factors/biosynthesis , Sp1 Transcription Factor/genetics , Animals , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Colonic Neoplasms/pathology , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Gene Silencing , Glyceraldehyde-3-Phosphate Dehydrogenases/antagonists & inhibitors , Humans , Liver Neoplasms/pathology , Liver Neoplasms/secondary , Mice , Neoplasm Metastasis , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , RNA, Small Interfering/genetics , Snail Family Transcription Factors/genetics , Sp1 Transcription Factor/biosynthesis , Xenograft Model Antitumor Assays
19.
J Biomater Sci Polym Ed ; 27(15): 1534-52, 2016 10.
Article in English | MEDLINE | ID: mdl-27484610

ABSTRACT

Although vascular implantation has been used as an effective treatment for cardiovascular disease for many years, off-the-shelf and regenerable vascular scaffolds are still not available. Tissue engineers have tested various materials and methods of surface modification in the attempt to develop a scaffold that is more suitable for implantation. Extracellular matrix-based natural materials and biodegradable polymers, which are the focus of this review, are considered to be suitable materials for production of tissue-engineered vascular grafts. Various methods of surface modification that have been developed will also be introduced, their impacts will be summarized and assessed, and challenges for further research will briefly be discussed.


Subject(s)
Blood Vessel Prosthesis , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Humans , Polymers/chemistry , Surface Properties
20.
Appl Opt ; 55(19): 5257-62, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27409218

ABSTRACT

A broadband, polarization-independent, and wide-angle refractory metal metamaterial absorber is numerically investigated at terahertz frequencies, which consists of a periodic array of a chromium metallic loop and a chromium metallic film separated by a polyimide layer. Results show that a higher than 90% broadband absorption can be achieved for the range of frequencies from 1.00 through 2.43 THz, and the full absorption width at half-maximum can attain 110.80%, which is considerably larger than in previously reported results. Moreover, the greater than 90% broadband absorption response can still be maintained when the incidence angle increases to 45°. The physical origin of the proposed broadband absorber originates from localized surface plasmon resonances of the single metallic loop resonator. Furthermore, the designed concept also can be achieved in the visible and near-infrared region by rationally designing the dimensions of the absorber. This compact design has potential applications in stealth technology, energy harvesting, and thermal imaging.

SELECTION OF CITATIONS
SEARCH DETAIL